Determining triangulations and quadrangulations by boundary distances

被引:2
作者
Haslegrave, John
机构
基金
欧洲研究理事会; 英国科研创新办公室;
关键词
Planar graph; Triangulation; Graph distance; Boundary rigidity; Graph reconstruction; TREE-CHILD NETWORKS; RIGIDITY;
D O I
10.1016/j.jctb.2023.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if all internal vertices of a disc triangulation have degree at least 6, then the full structure can be deter-mined from the pairwise graph distances between boundary vertices. A similar result holds for disc quadrangulations with all internal vertices having degree at least 4. This confirms a conjecture of Itai Benjamini. Both degree bounds are best possible, and correspond to local non-positive curvature. How-ever, we show that a natural conjecture for a "mixed" version of the two results is not true.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:233 / 255
页数:23
相关论文
共 15 条
[1]   An Isoperimetric Inequality for Planar Triangulations [J].
Angel, Omer ;
Benjamini, Itai ;
Horesh, Nizan .
DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (04) :802-809
[2]  
BENJAMINI I., Personal communication
[3]   An algorithm for reconstructing ultrametric tree-child networks from inter-taxa distances [J].
Bordewich, M. ;
Tokac, N. .
DISCRETE APPLIED MATHEMATICS, 2016, 213 :47-59
[4]   Recovering normal networks from shortest inter-taxa distance information [J].
Bordewich, Magnus ;
Huber, Katharina T. ;
Moulton, Vincent ;
Semple, Charles .
JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (03) :571-594
[5]   Constructing Tree-Child Networks from Distance Matrices [J].
Bordewich, Magnus ;
Semple, Charles ;
Tokac, Nihan .
ALGORITHMICA, 2018, 80 (08) :2240-2259
[6]   Determining phylogenetic networks from inter-taxa distances [J].
Bordewich, Magnus ;
Semple, Charles .
JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (02) :283-303
[7]  
Buneman Peter., 1974, J COMBINATORIAL THEO, V17, P48, DOI [10.1016/0095-8956(74)90047-1, DOI 10.1016/0095-8956(74)90047-1]
[8]   RIGIDITY FOR SURFACES OF NONPOSITIVE CURVATURE [J].
CROKE, CB .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (01) :150-169
[9]  
CROKE CB, 1991, J DIFFER GEOM, V33, P445, DOI 10.4310/jdg/1214446326
[10]  
GROMOV M, 1983, J DIFFER GEOM, V18, P1, DOI 10.4310/jdg/1214509283