Self-supervised ensembled learning for autism spectrum classification

被引:4
作者
Gaur, Manu [1 ]
Chaturvedi, Kunal [3 ]
Vishwakarma, Dinesh Kumar [1 ]
Ramasamy, Savitha [2 ]
Prasad, Mukesh [3 ]
机构
[1] Delhi Technol Univ, Dept Informat Technol, Biometr Res Lab, Bawana Rd, Delhi 110042, India
[2] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Comp Sci, Sydney 2007, Australia
关键词
Autism spectrum disorder; Self -supervised learning; Pre; -training; Classification; Ensembled learning; DISORDER; FRAMEWORK; CHILDREN;
D O I
10.1016/j.rasd.2023.102223
中图分类号
G76 [特殊教育];
学科分类号
040109 ;
摘要
Purpose: Deep learning has made remarkable progress in classifying autism spectrum disorder (ASD) using neuroimaging data. However, the current methods rely mainly on supervised learning, which requires a large amount of manually labeled data, making it an expensive and difficult task to scale.Methods: To overcome this limitation, we propose a novel ensemble-based framework that learns a transferable and generalizable visual representation from different self-supervised features for the downstream task of ASD classification. This framework dynamically learns a superior representation by aggregating complementary information in the frequency domain from independent self-supervised features with limited data. Additionally, to address the information loss caused by the dimensionality reduction of 3D fMRI data, we propose a thresholding algorithm to optimally extract the most discriminant features from 2D rs-fMRI data.Results: Experimental results demonstrate that the proposed method outperforms previous stateof-the-art methods by 19.69% on the ABIDE-1 dataset with a 10-fold cross-validation accuracy of 94.51%.Conclusion: The proposed method learns a transferrable and generalizable ensembled representation by leveraging complementary information encoded in different self-supervised representations for ASD classification.
引用
收藏
页数:12
相关论文
共 56 条
[1]   DarkASDNet: Classification of ASD on Functional MRI Using Deep Neural Network [J].
Ahammed, Md Shale ;
Niu, Sijie ;
Ahmed, Md Rishad ;
Dong, Jiwen ;
Gao, Xizhan ;
Chen, Yuehui .
FRONTIERS IN NEUROINFORMATICS, 2021, 15
[2]   ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data [J].
Almuqhim, Fahad ;
Saeed, Fahad .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
[3]   Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data [J].
Alzubaidi, Laith ;
Al-Amidie, Muthana ;
Al-Asadi, Ahmed ;
Humaidi, Amjad J. ;
Al-Shamma, Omran ;
Fadhel, Mohammed A. ;
Zhang, Jinglan ;
Santamaria, J. ;
Duan, Ye .
CANCERS, 2021, 13 (07)
[4]  
Andrearczyk V., 2019, Imvip
[5]  
[Anonymous], 2015, P 19 C COMP NAT LANG
[6]   Big Self-Supervised Models Advance Medical Image Classification [J].
Azizi, Shekoofeh ;
Mustafa, Basil ;
Ryan, Fiona ;
Beaver, Zachary ;
Freyberg, Jan ;
Deaton, Jonathan ;
Loh, Aaron ;
Karthikesalingam, Alan ;
Kornblith, Simon ;
Chen, Ting ;
Natarajan, Vivek ;
Norouzi, Mohammad .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :3458-3468
[7]  
Badarinath D, 2018, IEEE IJCNN
[8]   Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction [J].
Bai, Wenjia ;
Chen, Chen ;
Tarroni, Giacomo ;
Duan, Jinming ;
Guitton, Florian ;
Petersen, Steffen E. ;
Guo, Yike ;
Matthews, Paul M. ;
Rueckert, Daniel .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :541-549
[9]  
Cameron C., 2013, Frontiers in Neuroinformatics, V7, P41
[10]  
Caron M., 2020, Unsupervised learning of visual features by contrasting cluster assignments, V2020