Recycling of steel slag powder in green ultra-high strength concrete (UHSC) mortar at various curing conditions

被引:23
作者
Fan, Dingqiang [1 ,2 ]
Zhang, Chunpeng [2 ]
Lu, Jian-Xin [2 ]
Liu, Kangning [1 ]
Yin, Tianyi [1 ]
Dong, Enlai [1 ]
Yu, Rui [1 ,3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[3] Wuhan Univ Technol, Adv Engn Technol Res Inst Zhongshan City, Zhongshan 528400, Guangdong, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2023年 / 70卷
基金
中国国家自然科学基金;
关键词
UHSC; Steel slag powder; Steam curing; Mechanical properties; Microstructure; HIGH-PERFORMANCE CONCRETE; FURNACE SLAG; CEMENT; IMPACT; REPLACEMENT; EFFICIENCY; BEHAVIOR; DESIGN; MIX;
D O I
10.1016/j.jobe.2023.106361
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The large quantity of steel slag deposit has caused great environmental pressure. This study aims to recycle steel slag as binder in the production of green ultra-high strength concrete (UHSC) subjected to different curing regimes (i.e. standard and steam curing). The fresh behaviors, mechanical properties, microstructure and ecological value of the UHSC are explicitly assessed with the help of the Funk and Dinger particle packing model. The results show that the inclusion of steel slag powder (SSP) increases the workability (up to about 13%) and wet packing density of UHSC. The use of SSP results in a decrease of early compressive strength, because the SSP inhibits cement hydration at early stage. The steam curing can minimize this negative impact of SSP on the early compressive strength (>120 MPa). Besides, the increase of SSP dosage results in a reduction in the flexural strength for both early and later ages, but steam curing reduces the decline ratio. The high temperature curing not only promotes the hydration process of both cement and SSP, but also accelerates the pozzolanic reaction of silica fume, resulting in a lower porosity (4.78%) of UHSC with SSP. Finally, the ecological assessment shows that the recycling SSP as a replacement of cement in the UHSC system can reduce energy consumption and carbon emissions. Therefore, the results in this study indicate the feasibility of utilizing SSP in the fabrication of sustainable UHSC products with excellent performance.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Effect of steel fibers on the performance of an economical ultra-high strength concrete
    Nguyen, Tan-Trac
    Thai, Huu-Tai
    Ngo, Tuan
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2327 - 2341
  • [22] Affecting Mechanism of Curing Regimes on the Strength of Ultra-high Performance Concrete
    Sun, Jialun
    Zhang, Chunxiao
    Mao, Jize
    Li, Mingzhe
    Gao, Xiaojian
    Cailiao Daobao/Materials Reports, 2024, 38 (18):
  • [23] Utilization of steel slag in ultra-high performance concrete with enhanced eco-friendliness
    Zhang, Xiuzhen
    Zhao, Sixue
    Liu, Zhichao
    Wang, Fazhou
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 214 : 28 - 36
  • [24] Incorporating Limestone Powder and Ground Granulated Blast Furnace Slag in Ultra-high Performance Concrete to Enhance Sustainability
    Sharma, Yashovardhan
    Yeluri, Meghana
    Allena, Srinivas
    Owusu-Danquah, Josiah
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2024, 18 (01)
  • [25] Mechanical properties of ultra-high strength cement-based materials (UHSC) incorporating metal powders and steel fibers
    Yang, Kai
    Tang, Zhuo
    Cheng, Zhiqing
    Zhao, Hong
    Feng, Ruiping
    Long, Guangcheng
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 318
  • [26] Experimental and theoretical studies of hydration of ultra-high performance concrete cured under various curing conditions
    Kim, Seonhyeok
    Lee, Namkon
    Lee, H. K.
    Park, Solmoi
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 278
  • [27] Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes
    Xiong, Ming-Xiang
    Liew, J. Y. Richard
    MATERIALS & DESIGN, 2016, 104 : 414 - 427
  • [28] Durability and Microstructure of Ultra-High Performance Concrete Having High Volume of Steel Slag Powder and Ultra-Fine Fly Ash
    Peng, Yanzhou
    Chen, Kai
    Hu, Shuguang
    ADVANCES IN CIVIL ENGINEERING, PTS 1-6, 2011, 255-260 : 452 - +
  • [29] Review on ultra-high strength concrete filled steel tubes
    Chen B.-C.
    Li L.
    Luo X.
    Wei J.-G.
    Lai X.-Y.
    Liu J.-P.
    Ding Q.-J.
    Li C.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2020, 20 (05): : 1 - 21
  • [30] Influence of mix proportioning parameters and curing regimes on the properties of ultra-high strength alkali-activated concrete
    Zhang, Rong
    He, Haiyu
    Song, Yuhuan
    Zhi, Xudong
    Fan, Feng
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 393