Castelnuovo-Mumford Regularity of Projective Monomial Curves via Sumsets

被引:1
作者
Gimenez, Philippe [1 ]
Gonzalez-Sanchez, Mario [1 ]
机构
[1] Univ Valladolid, IMUVA Math Res Inst, Valladolid 47011, Spain
关键词
Castelnuovo-Mumford regularity; projective monomial curve; semigroup ring; sumsets; Apery set; STRUCTURE THEOREM;
D O I
10.1007/s00009-023-02482-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A = {a(0), ... , (an-1)} be a finite set of n = 4 non-negative relatively prime integers, such that 0 = a(0) < a(1) < . . . < a(n-1) = d. The s-fold sumset of A is the set sA of integers that contains all the sums of s elements in A. On the other hand, given an infinite field k, one can associate with A the projective monomial curve CA parametrized by A, C-A = {(v(d) : u(a)1v(d-a)1 : . . .: ua(n-2)v(d-a)n-2 : u(d)) | (u : v) ? P-k(1)} ? Pn-1 (k) . The exponents in the previous parametrization of CA define a homogeneous semigroup S ? N-2. We provide several results relating the Castelnuovo-Mumford regularity of C-A to the behavior of the sumsets of A and to the combinatorics of the semigroup S that reveal a new interplay between commutative algebra and additive number theory. Mathematics Subject Classification. Primary 13D02; Secondary 13D45, 11B13, 14H45, 20M50.
引用
收藏
页数:24
相关论文
共 25 条
[1]  
Bermejo I., 2022, MREGULAR LIB SINGULA
[2]   Castelnuovo-Mumford regularity of projective monomial varieties of codimension two [J].
Bermejo, Isabel ;
Gimenez, Philippe ;
Morales, Marcel .
JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (10) :1105-1124
[3]   Saturation and Castelnuovo-Mumford regularity [J].
Bermejo, Isabel ;
Gimenez, Philippe .
JOURNAL OF ALGEBRA, 2006, 303 (02) :592-617
[4]   ON MONOMIAL CURVES AND COHEN-MACAULAY TYPE [J].
CAVALIERE, MP ;
NIESI, G .
MANUSCRIPTA MATHEMATICA, 1983, 42 (2-3) :147-159
[5]  
Chardin M., 2007, Syzygies and Hilbert functions, V254, P1
[6]   Sumsets and Veronese varieties [J].
Colarte-Gomez, Liena ;
Elias, Joan ;
Miro-Roig, Rosa M. .
COLLECTANEA MATHEMATICA, 2023, 74 (02) :353-374
[7]  
Decker Wolfram., 2022, SINGULAR 4-3-0 - A computer algebra system for polynomial computations
[8]  
Delgado M., 2020, NumericalSgps - A package for numerical semigroups
[9]   LINEAR FREE RESOLUTIONS AND MINIMAL MULTIPLICITY [J].
EISENBUD, D ;
GOTO, S .
JOURNAL OF ALGEBRA, 1984, 88 (01) :89-133
[10]  
Eisenbud D., 2005, The geometry of syzygies