Sharp Lp-error estimates for sampling operators

被引:0
|
作者
Kolomoitsev, Yurii [1 ]
Lomako, Tetiana [1 ]
机构
[1] Gottingen Univ, Inst Numer & Appl Math, Lotzestr 16-18, D-37083 Gottingen, Germany
关键词
Sampling operators; Interpolation; Integral and averaged moduli of smoothness; K-functionals; Best one-sided approximation; Steklov means; POLYNOMIAL INTERPOLATION; LAGRANGE INTERPOLATION; L-P; APPROXIMATION; SMOOTHNESS; ORDER;
D O I
10.1016/j.jat.2023.105941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study approximation properties of linear sampling operators in the spaces Lp for 1 < p < oo. By means of the Steklov averages, we introduce a new measure of smoothness that simultaneously contains information on the smoothness of a function in Lp and discrete information on the behaviour of a function at sampling points. The new measure of smoothness enables us to improve and extend several classical results of approximation theory to the case of linear sampling operators. In particular, we obtain matching direct and inverse approximation inequalities for sampling operators in Lp, find the exact order of decay of the corresponding Lp-errors for particular classes of functions, and introduce a special K-functional and its realization suitable for studying smoothness properties of sampling operators. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Lp-error estimates for "shifted" surface spline interpolation on Sobolev space
    Yoon, J
    MATHEMATICS OF COMPUTATION, 2003, 72 (243) : 1349 - 1367
  • [2] On Lp-error of bivariate polynomial interpolation on the square
    Kolomoitsev, Yurii
    Lomako, Tetiana
    Prestin, Juergen
    JOURNAL OF APPROXIMATION THEORY, 2018, 229 : 13 - 35
  • [3] On the Lp-error of adaptive approximation of bivariate functions by ha onic splines
    Babenko, Yuliya
    Leskevych, Tetiana
    APPLICABLE ANALYSIS, 2014, 93 (01) : 171 - 189
  • [4] ESTIMATES OF THE APPROXIMATION ERROR FOR ABSTRACT SAMPLING TYPE OPERATORS IN ORLICZ SPACES
    Bardaro, Carlo
    Mantellini, Ilaria
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 45 - 70
  • [5] Lp ERROR ESTIMATES FOR SCATTERED DATA INTERPOLATION ON SPHERES
    Cao, Feilong
    Guo, Xiaofei
    Lin, Shaobo
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (12) : 1205 - 1218
  • [6] Quantitative Estimates for Nonlinear Sampling Kantorovich Operators
    Cetin, Nursel
    Costarelli, Danilo
    Vinti, Gianluca
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [7] Lp estimates for parabolic magnetic Schrodinger operators
    Tang, Lin
    FORUM MATHEMATICUM, 2010, 22 (02) : 203 - 220
  • [8] Sharp Lp-Lq estimates for evolution equations with damped oscillations
    D'Abbicco, Marcello
    Ebert, Marcelo
    MATHEMATISCHE ANNALEN, 2025, : 153 - 195
  • [9] Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces
    Cetin, Nursel
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 12 - 25
  • [10] The max-product generalized sampling operators: convergence and quantitative estimates
    Coroianu, Lucian
    Costarelli, Danilo
    Gal, Sorin G.
    Vinti, Gianluca
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 173 - 183