Data management strategy for a collaborative research center

被引:2
作者
Mittal, Deepti [1 ]
Mease, Rebecca [2 ]
Kuner, Thomas [3 ]
Flor, Herta [4 ]
Kuner, Rohini [1 ]
Andoh, Jamila [5 ]
机构
[1] Heidelberg Univ, Inst Pharmacol, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Inst Physiol & Pathophysiol, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Inst Anat & Cell Biol, D-69120 Mannheim, Germany
[4] Heidelberg Univ, Med Fac Mannheim, Cent Inst Mental Hlth, Dept Cognit & Clin Neurosci, D-68159 Mannheim, Germany
[5] Heidelberg Univ, Med Fac Mannheim, Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, D-68159 Mannheim, Germany
来源
GIGASCIENCE | 2023年 / 12卷
关键词
BIG DATA; WEB; NEUROSCIENCE; TOOLS; IMAGE; REPOSITORIES; CHALLENGES; STANDARDS; COMMUNITY; NOTEBOOK;
D O I
10.1093/gigascience/giad049
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The importance of effective research data management (RDM) strategies to support the generation of Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience data grows with each advance in data acquisition techniques and research methods. To maximize the impact of diverse research strategies, multidisciplinary, large-scale neuroscience research consortia face a number of unsolved challenges in RDM. While open science principles are largely accepted, it is practically difficult for researchers to prioritize RDM over other pressing demands. The implementation of a coherent, executable RDM plan for consortia spanning animal, human, and clinical studies is becoming increasingly challenging. Here, we present an RDM strategy implemented for the Heidelberg Collaborative Research Consortium. Our consortium combines basic and clinical research in diverse populations (animals and humans) and produces highly heterogeneous and multimodal research data (e.g., neurophysiology, neuroimaging, genetics, behavior). We present a concrete strategy for initiating early-stage RDM and FAIR data generation for large-scale collaborative research consortia, with a focus on sustainable solutions that incentivize incremental RDM while respecting research-specific requirements.
引用
收藏
页数:25
相关论文
共 246 条
  • [1] Abrams MB, 2022, NEUROINFORMATICS, V20, P25, DOI 10.1007/s12021-020-09509-0
  • [2] Recent advancements in behavioral testing in rodents
    Agim Uslu, Zeynep Sena
    [J]. METHODSX, 2021, 8
  • [3] Standardized and reproducible measurement of decision-making in mice
    Aguillon-Rodriguez, Valeria
    Angelaki, Dora
    Bayer, Hannah
    Bonacchi, Niccolo
    Carandini, Matteo
    Cazettes, Fanny
    Chapuis, Gaelle
    Churchland, Anne K.
    Dan, Yang
    Dewitt, Eric
    Faulkner, Mayo
    Forrest, Hamish
    Haetzel, Laura
    Hausser, Michael
    Hofer, Sonja B.
    Hu, Fei
    Khanal, Anup
    Krasniak, Christopher
    Laranjeira, Ines
    Mainen, Zachary F.
    Meijer, Guido
    Miska, Nathaniel J.
    Mrsic-Flogel, Thomas D.
    Murakami, Masayoshi
    Noel, Jean-Paul
    Pan-Vazquez, Alejandro
    Rossant, Cyrille
    Sanders, Joshua
    Socha, Karolina
    Terry, Rebecca
    Urai, Anne E.
    Vergara, Hernando
    Wells, Miles
    Wilson, Christian J.
    Witten, Ilana B.
    Wool, Lauren E.
    Zador, Anthony M.
    [J]. ELIFE, 2021, 10
  • [4] The Flaws and Human Harms of Animal Experimentation
    Akhtar, Aysha
    [J]. CAMBRIDGE QUARTERLY OF HEALTHCARE ETHICS, 2015, 24 (04) : 407 - 419
  • [5] Alam Sadaf, 2021, Brain-Inspired Computing: 4th International Workshop, BrainComp 2019, Revised Selected Papers. Lecture Notes in Computer Science, Theoretical Computer Science and General Issues (12339), P81, DOI 10.1007/978-3-030-82427-3_6
  • [6] Amari Shun-Ichi, 2002, J Integr Neurosci, V1, P117, DOI 10.1142/S0219635202000128
  • [8] [Anonymous], ELN FINDER
  • [9] [Anonymous], 1995, Hospital Anxiety and Depression ScaleGerman Version
  • [10] [Anonymous], 2020, About us