Tissue characterization of renal masses using Nakagami-modeling of ultrasound-based texture

被引:0
作者
Varghese, Bino A. [1 ]
Rivas, Marielena [2 ]
Cen, Steven [1 ]
Lei, Xiaomeng [1 ]
Chang, Michael [3 ]
Lee, KwangJu [4 ]
Jamie, Janet [1 ]
Amoedo, Renata L. [5 ]
Franco, Mario [1 ]
Hwang, Darryl H. [1 ]
Desai, Bhushan [1 ]
King, Kevin G. [6 ]
Cheng, Phillip M. [1 ]
Duddalwar, Vinay [1 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90007 USA
[2] Richmond Univ, Med Ctr, Staten Isl, NY USA
[3] Icahn Sch Med Mt Sinai, New York, NY USA
[4] Samsung Medison Co Ltd, Seoul, South Korea
[5] Hosp Sao Rafael Rede Or, Salvador, BA, Brazil
[6] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA USA
来源
18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS | 2023年 / 12567卷
关键词
Renal mass; Radiofrequency data; tissue characterization; B-mode; CEUS; Nakagami parameter; BACKSCATTERING; CLASSIFICATION;
D O I
10.1117/12.2670273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this Institutional Review Board (IRB) approved, Health Insurance Portability and Accountability Act (HIPAA) compliant, prospective study, uncompressed envelope data (RF data) were collected from 100 patients with focal renal masses using an RS80A ultrasound scanner with B-mode and CEUS. By summing and averaging the Nakagami images formed using sliding windows, we use the average `m' to stratify manually segmented masses, using data from both the B-mode and CEUS scans. Wilcoxon rank sum test using an alpha value of 0.05 was used detect differences between the groups. Logistic regression was used for classification and the area under the receiver operator curve (AUC) was used to assess performance. Among the 100 masses, 40 were benign, 37 were malignant based on histopathology, and 23 were radiologically and clinically presumed malignant but with no pathological proof at the time of data analysis. Univariate analyses showed significant (p<0.01) differences between the benign and non- benign masses on both B- mode and CEUS, with non-benign masses having smaller `m'. Predictive models constructed using Nakagami parameters extracted from B-mode and CEUS-based RF scans showed an AUC of 0.67 95% CI: (0.56, 0.78) and 0.61 95% CI: (0.5, 0.73), respectively for discriminating benign from non-benign renal masses. The concordance between the two assessments was 95%. We present a framework for characterizing images using speckle textural properties, for example Nakagami analysis, to aid in objective tissue characterization using ultrasound.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Ultrasound-based "CEUS-Bosniak"classification for cystic renal lesions: an 8-year clinical experience [J].
Herms, Elena ;
Weirich, Gregor ;
Maurer, Tobias ;
Wagenpfeil, Stefan ;
Preuss, Stephanie ;
Sauter, Andreas ;
Heck, Matthias ;
Gaertner, Anita ;
Hauner, Katharina ;
Autenrieth, Michael ;
Kubler, Hubert P. ;
Holzapfel, Konstantin ;
Schwarz-Boeger, Ulrike ;
Heemann, Uwe ;
Slotta-Huspenina, Julia ;
Stock, Konrad Friedrich .
WORLD JOURNAL OF UROLOGY, 2023, 41 (03) :679-685
[42]   Ultrasound-based “CEUS-Bosniak”classification for cystic renal lesions: an 8-year clinical experience [J].
Elena Herms ;
Gregor Weirich ;
Tobias Maurer ;
Stefan Wagenpfeil ;
Stephanie Preuss ;
Andreas Sauter ;
Matthias Heck ;
Anita Gärtner ;
Katharina Hauner ;
Michael Autenrieth ;
Hubert P. Kübler ;
Konstantin Holzapfel ;
Ulrike Schwarz-Boeger ;
Uwe Heemann ;
Julia Slotta-Huspenina ;
Konrad Friedrich Stock .
World Journal of Urology, 2023, 41 :679-685
[43]   Necessity of removal of high-intensity non-speckle signals in Nakagami-based ultrasound tissue characterization under pre-Rayleigh condition [J].
Mori, Shohei ;
Yoshizawa, Shin .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (03)
[44]   Prospective evaluation of CT indeterminate renal masses using US and contrast-enhanced ultrasound [J].
Carlos Nicolau ;
Laura Buñesch ;
Blanca Paño ;
Rafael Salvador ;
Maria Jose Ribal ;
Carme Mallofré ;
Carmen Sebastià .
Abdominal Imaging, 2015, 40 :542-551
[45]   Prospective evaluation of CT indeterminate renal masses using US and contrast-enhanced ultrasound [J].
Nicolau, Carlos ;
Bunesch, Laura ;
Pano, Blanca ;
Salvador, Rafael ;
Jose Ribal, Maria ;
Mallofre, Carme ;
Sebastia, Carmen .
ABDOMINAL IMAGING, 2015, 40 (03) :542-551
[46]   Ultrasound-Based Detection of Prostate Cancer Using Automatic Feature Selection with Deep Belief Networks [J].
Azizi, Shekoofeh ;
Imani, Farhad ;
Zhuang, Bo ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Uniyal, Nishant ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Moradi, Mehdi ;
Mousavi, Parvin ;
Abolmaesumi, Purang .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 :70-77
[47]   HETEROGENEOUS TISSUE CHARACTERIZATION USING ULTRASOUND: A COMPARISON OF FRACTAL ANALYSIS BACKSCATTER MODELS ON LIVER TUMORS [J].
Al-Kadi, Omar S. ;
Chung, Daniel Y. F. ;
Coussios, Constantin C. ;
Noble, J. Alison .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2016, 42 (07) :1612-1626
[48]   Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system [J].
Saba, Luca ;
Sanagala, Skandha S. ;
Gupta, Suneet K. ;
Koppula, Vijaya K. ;
Johri, Amer M. ;
Sharma, Aditya M. ;
Kolluri, Raghu ;
Bhatt, Deepak L. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2021, 37 (05) :1511-1528
[49]   Tissue Characterization of the Blood Vessel near the Body Surface Using Ultrasound [J].
Ishiguro, Takashi ;
Katsumata, Shinya ;
Shimura, Takaki ;
Sasaki, Hideto ;
Masuda, Hiroyuki ;
Kobayashi, Kazuto ;
Umeda, Kazuharu .
WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 :1430-+
[50]   Rotation invariant texture characterization using a curvelet based descriptor [J].
Gomez, F. ;
Romero, E. .
PATTERN RECOGNITION LETTERS, 2011, 32 (16) :2178-2186