Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks

被引:7
作者
Song, Hongzhi [1 ]
Yin, Chaoyi [1 ]
Li, Zhuopeng [2 ]
Feng, Ke [1 ]
Cao, Yangkun [1 ]
Gu, Yujie [1 ]
Sun, Huiyan [1 ]
机构
[1] Jilin Univ, Sch Artificial Intelligence, Changchun, Peoples R China
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
graph neural network; multiomics data; cancer driver gene; PPI network; biomarker; MUTATIONS; PROGNOSIS; PATHWAY;
D O I
10.3390/metabo13030339
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancer is a heterogeneous disease that is driven by the accumulation of both genetic and nongenetic alterations, so integrating multiomics data and extracting effective information from them is expected to be an effective way to predict cancer driver genes. In this paper, we first generate comprehensive instructive features for each gene from genomic, epigenomic, transcriptomic levels together with protein-protein interaction (PPI)-networks-derived attributes and then propose a novel semisupervised deep graph learning framework GGraphSAGE to predict cancer driver genes according to the impact of the alterations on a biological system. When applied to eight tumor types, experimental results suggest that GGraphSAGE outperforms several state-of-the-art computational methods for driver genes identification. Moreover, it broadens our current understanding of cancer driver genes from multiomics level and identifies driver genes specific to the tumor type rather than pan-cancer. We expect GGraphSAGE to open new avenues in precision medicine and even further predict drivers for other complex diseases.
引用
收藏
页数:23
相关论文
共 64 条
  • [1] Abeywickrama T, 2016, Arxiv, DOI arXiv:1601.01549
  • [2] Adzhubei Ivan, 2013, Curr Protoc Hum Genet, VChapter 7, DOI 10.1002/0471142905.hg0720s76
  • [3] Bailey MH, 2018, CELL, V173, P371, DOI [10.1016/j.cell.2018.02.060, 10.1016/j.cell.2018.07.034]
  • [4] DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
    Bashashati, Ali
    Haffari, Gholamreza
    Ding, Jiarui
    Ha, Gavin
    Lui, Kenneth
    Rosner, Jamie
    Huntsman, David G.
    Caldas, Carlos
    Aparicio, Samuel A.
    Shah, Sohrab P.
    [J]. GENOME BIOLOGY, 2012, 13 (12): : R124
  • [5] Epigenetic Determinants of Cancer
    Baylin, Stephen B.
    Jones, Peter A.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2016, 8 (09):
  • [6] Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles
    Bertrand, Denis
    Chng, Kern Rei
    Sherbaf, Faranak Ghazi
    Kiesel, Anja
    Chia, Burton K. H.
    Sia, Yee Yen
    Huang, Sharon K.
    Hoon, Dave S. B.
    Liu, Edison T.
    Hillmer, Axel
    Nagarajan, Niranjan
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (07)
  • [7] Transcriptional Addiction in Cancer
    Bradner, James E.
    Hnisz, Denes
    Young, Richard A.
    [J]. CELL, 2017, 168 (04) : 629 - 643
  • [8] Carter H., 2012, THESIS JOHNS HOPKINS
  • [9] The BioGRID interaction database: 2015 update
    Chatr-aryamontri, Andrew
    Breitkreutz, Bobby-Joe
    Oughtred, Rose
    Boucher, Lorrie
    Heinicke, Sven
    Chen, Daici
    Stark, Chris
    Breitkreutz, Ashton
    Kolas, Nadine
    O'Donnell, Lara
    Reguly, Teresa
    Nixon, Julie
    Ramage, Lindsay
    Winter, Andrew
    Sellam, Adnane
    Chang, Christie
    Hirschman, Jodi
    Theesfeld, Chandra
    Rust, Jennifer
    Livstone, Michael S.
    Dolinski, Kara
    Tyers, Mike
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D470 - D478
  • [10] The role of m6A RNA methylation in human cancer
    Chen, Xiao-Yu
    Zhang, Jing
    Zhu, Jin-Shui
    [J]. MOLECULAR CANCER, 2019, 18 (1)