A Novel Deep-Learning-Based CADx Architecture for Classification of Thyroid Nodules Using Ultrasound Images

被引:9
|
作者
Goreke, Volkan [1 ]
机构
[1] Sivas Cumhuriyet Univ, Sivas Vocat Sch Tech Sci, Dept Comp Technol, TR-58140 Sivas, Turkiye
关键词
CADx; Thyroid nodules; Deep learning; FINE-NEEDLE-ASPIRATION; TEXTURE; WAVELET; CANCER; ULTRASONOGRAPHY; EXTRACTION; FEATURES;
D O I
10.1007/s12539-023-00560-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nodules of thyroid cancer occur in the cells of the thyroid as benign or malign types. Thyroid sonographic images are mostly used for diagnosis of thyroid cancer. The aim of this study is to introduce a computer-aided diagnosis system that can classify the thyroid nodules with high accuracy using the data gathered from ultrasound images. Acquisition and labeling of sub-images were performed by a specialist physician. Then the number of these sub-images were increased using data augmentation methods. Deep features were obtained from the images using a pre-trained deep neural network. The dimensions of the features were reduced and features were improved. The improved features were combined with morphological and texture features. This feature group was rated by a value called similarity coefficient value which was obtained from a similarity coefficient generator module. The nodules were classified as benign or malignant using a multi-layer deep neural network with a pre-weighting layer designed with a novel approach. In this study, a novel multi-layer computer-aided diagnosis system was proposed for thyroid cancer detection. In the first layer of the system, a novel feature extraction method based on the class similarity of images was developed. In the second layer, a novel pre-weighting layer was proposed by modifying the genetic algorithm. The proposed system showed superior performance in different metrics compared to the literature.
引用
收藏
页码:360 / 373
页数:14
相关论文
共 50 条
  • [21] Automatic Classification of Nodules from 2D Ultrasound Images Using Deep Learning Networks
    Tareke, Tewele W.
    Leclerc, Sarah
    Vuillemin, Catherine
    Buffier, Perrine
    Crevisy, Elodie
    Nguyen, Amandine
    Meteau, Marie-Paule Monnier
    Legris, Pauline
    Angiolini, Serge
    Lalande, Alain
    JOURNAL OF IMAGING, 2024, 10 (08)
  • [22] Online Transfer Learning for Differential Diagnosis of Benign and Malignant Thyroid Nodules With Ultrasound Images
    Zhou, Hui
    Wang, Kun
    Tian, Jie
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (10) : 2773 - 2780
  • [23] Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images
    Liu, Yujiang
    Feng, Ying
    Qian, Linxue
    Wang, Zhixiang
    Hu, Xiangdong
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (24) : 2538 - 2546
  • [24] DEEP LEARNING-BASED SEGMENTATION OF NODULES IN THYROID ULTRASOUND: IMPROVING PERFORMANCE BY UTILIZING MARKERS PRESENT IN THE IMAGES
    Buda, Mateusz
    Wildman-Tobriner, Benjamin
    Castor, Kerry
    Hoang, Jenny K.
    Mazurowski, Maciej A.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (02) : 415 - 421
  • [25] A deep learning framework for supporting the classification of breast lesions in ultrasound images
    Han, Seokmin
    Kang, Ho-Kyung
    Jeong, Ja-Yeon
    Park, Moon-Ho
    Kim, Wonsik
    Bang, Won-Chul
    Seong, Yeong-Kyeong
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (19) : 7714 - 7728
  • [26] Localization and Risk Stratification of Thyroid Nodules in Ultrasound Images Through Deep Learning
    Wang, Zhipeng
    Wang, Xiuzhu
    Wang, Ting
    Qiu, Jianfeng
    Lu, Weizhao
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2024, 50 (06) : 882 - 887
  • [27] Classification for thyroid nodule using ViT with contrastive learning in ultrasound images
    Sun, Jiawei
    Wu, Bobo
    Zhao, Tong
    Gao, Liugang
    Xie, Kai
    Lin, Tao
    Sui, Jianfeng
    Li, Xiaoqin
    Wu, Xiaojin
    Ni, Xinye
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152
  • [28] An unsupervised automatic texture classification method for ultrasound images of thyroid nodules
    Lu, Chenzhuo
    Fu, Zhuang
    Fei, Jian
    Xie, Rongli
    Lu, Chenyue
    PHYSICS IN MEDICINE AND BIOLOGY, 2025, 70 (02)
  • [29] Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks
    Wang, Lituan
    Zhang, Lei
    Zhu, Minjuan
    Qi, Xiaofeng
    Yi, Zhang
    MEDICAL IMAGE ANALYSIS, 2020, 61
  • [30] Ultrasound Image Classification of Thyroid Nodules Using Machine Learning Techniques
    Vadhiraj, Vijay Vyas
    Simpkin, Andrew
    O'Connell, James
    Ospina, Naykky Singh
    Maraka, Spyridoula
    O'Keeffe, Derek T.
    MEDICINA-LITHUANIA, 2021, 57 (06):