Efficient and Stable Inverted Perovskite Solar Cells Using Donor-Acceptor-Donor Small Molecules to Tuning NiOx/Perovskite Interfacial Microstructure

被引:4
作者
Wu, Xianhu [1 ]
Zhang, Mingrui [1 ]
Wu, Guiyuan [1 ]
Cui, Guanglei [1 ]
Bi, Jieyu [1 ]
Liu, Nian [1 ]
Li, Ping [2 ]
Zhao, Chunyi [1 ]
Zuo, Zewen [1 ]
Kong, Lingbing [3 ]
Gu, Min [4 ]
机构
[1] Anhui Normal Univ, Coll Phys & Elect Informat, Anhui Prov Key Lab Optoelect Mat Sci & Technol, Wuhu 241002, Peoples R China
[2] Zunyi Normal Coll, Sch Phys & Elect Sci, Zunyi 563002, Peoples R China
[3] Shanghai Aerosp Elect Technol Inst, Shanghai 201108, Peoples R China
[4] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
donor-acceptor-donor; interfacial modification layer; inverted perovskite solar cells; nickel oxide; HIGHLY EFFICIENT; NIOX; PERFORMANCE; TRIHALIDE; LAYER;
D O I
10.1002/solr.202300018
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nickel oxide (NiOx) is one of the most widely used inorganic hole transport materials for inverted perovskite solar cells (PSCs), which has the advantages of low cost, easy preparation, and good stability. However, the energy-level mismatch and interfacial redox reactions at the NiOx/perovskite interface limit the performance of NiOx-based PSCs. Herein, triphenylamine-2,1,3-benzothiadiazole-triphenylamine (TBT) small-molecule material is first used as an interfacial modification layer between NiOx and perovskite. The deposition of TBT on NiOx helps to hinder the contact between NiOx and perovskite, improves the electrical conductivity, passivates interfacial defects, and inhibits the recombination of interfacial carriers. TBT makes the valance band top energy level of NiOx better match that of perovskite and promotes the hole transfer at NiOx/perovskite interface, and the hole transfer rate increases from 2.19 x 10(10) to 4.12 x 10(10) s(-1). The TBT-based device obtains a champion power conversion efficiency (PCE) of 21.84%, much higher than the control device (18.62%). Furthermore, the optimized device which is conserved in 30 +/- 5% relative humidity and 25 degrees C environments more than 1000 h retains 90% of the initial efficiency. A effective strategy to improve the PCE and stability of NiOx-based PSCs is provided.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Adsorption Behavior of I3- and I- Ions at a Nanoporous NiO/Acetonitrile Interface Studied by X-ray Photoelectron Spectroscopy [J].
Bonomo, Matteo ;
Dini, Danilo ;
Marrani, Andrea G. .
LANGMUIR, 2016, 32 (44) :11540-11550
[2]   Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Shallcross, R. Clayton ;
Moot, Taylor ;
Kerner, Ross ;
Bertoluzzi, Luca ;
Onno, Arthur ;
Kavadiya, Shalinee ;
Chosy, Cullen ;
Wolf, Eli J. ;
Werner, Jeremie ;
Raiford, James A. ;
de Paula, Camila ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Berry, Joseph J. ;
Bent, Stacey F. ;
Holman, Zachary C. ;
Luther, Joseph M. ;
Ratcliff, Erin L. ;
Armstrong, Neal R. ;
McGehee, Michael D. .
JOULE, 2020, 4 (08) :1759-1775
[3]   Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiOx-Based Planar Perovskite Solar Cells with High Efficiency of over 20% [J].
Chang, Yi-Min ;
Li, Chia-Wei ;
Lu, Yu-Lin ;
Wu, Meng-Shian ;
Li, Hsin ;
Lin, Ying-Sheng ;
Lu, Chin-Wei ;
Chen, Chih-Ping ;
Chang, Yuan Jay .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (05) :6450-6460
[4]   Band alignment towards high-efficiency NiOx-based Sn-Pb mixed perovskite solar cells [J].
Chen, Hao ;
Peng, Zijian ;
Xu, Kaimin ;
Wei, Qi ;
Yu, Danni ;
Han, Congcong ;
Li, Hansheng ;
Ning, Zhijun .
SCIENCE CHINA-MATERIALS, 2021, 64 (03) :537-546
[5]   Solar Cell Efficiency Exceeding 25% through Rb-Based Perovskitoid Scaffold Stabilizing the Buried Perovskite Surface [J].
Chen, Jinbo ;
Dong, Hua ;
Li, Jingrui ;
Zhu, Xinyi ;
Xu, Jie ;
Pan, Fang ;
Xu, Ruoyao ;
Xi, Jun ;
Jiao, Bo ;
Hou, Xun ;
Ng, Kar Wei ;
Wang, Shuang-Peng ;
Wu, Zhaoxin .
ACS ENERGY LETTERS, 2022, 7 (10) :3685-3694
[6]   Dual-Functional Enantiomeric Compounds as Hole-Transporting Materials and Interfacial Layers in Perovskite Solar Cells [J].
Chiu, Yu-Lin ;
Li, Chia-Wei ;
Kang, Yu-Hsuan ;
Lin, Chi-Wei ;
Lu, Chin-Wei ;
Chen, Chih-Ping ;
Chang, Yuan Jay .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (22) :26135-26147
[7]   Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells [J].
Choi, Hyosung ;
Mai, Cheng-Kang ;
Kim, Hak-Beom ;
Jeong, Jaeki ;
Song, Seyeong ;
Bazan, Guillermo C. ;
Kim, Jin Young ;
Heeger, Alan J. .
NATURE COMMUNICATIONS, 2015, 6
[8]   Anti-solvent free fabrication of FA-Based perovskite at low temperature towards to high performance flexible perovskite solar cells [J].
Deng, Wenbin ;
Li, Faming ;
Li, Jianyang ;
Wang, Ming ;
Hu, Yuchao ;
Liu, Mingzhen .
NANO ENERGY, 2020, 70
[9]   Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells [J].
Eperon, Giles E. ;
Stranks, Samuel D. ;
Menelaou, Christopher ;
Johnston, Michael B. ;
Herz, Laura M. ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :982-988
[10]   A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible Perovskite Modules with a Near-90% Yield Rate [J].
Fan, Baojin ;
Xiong, Jian ;
Zhang, Yanyan ;
Gong, Chenxiang ;
Li, Feng ;
Meng, Xiangchuan ;
Hu, Xiaotian ;
Yuan, Zhongyi ;
Wang, Fuyi ;
Chen, Yiwang .
ADVANCED MATERIALS, 2022, 34 (29)