Mitochondrial NAD kinase in health and disease

被引:7
作者
Zhang, Ren [1 ]
Zhang, Kezhong [1 ]
机构
[1] Wayne State Univ, Ctr Mol Med & Genet, Sch Med, Detroit, MI 48201 USA
来源
REDOX BIOLOGY | 2023年 / 60卷
基金
美国国家卫生研究院;
关键词
Antioxidation; Mitochondria; MNADK; NAD; NADP; NADK; NADK2; FUNCTIONAL-CHARACTERIZATION; PHOSPHOPROTEOME REVEALS; MICROCOCCUS-FLAVUS; CELLULAR FUNCTIONS; DEFICIENCY; MOLECULES; MNADK;
D O I
10.1016/j.redox.2023.102613
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nicotinamide adenine dinucleotide phosphate (NADP), a co-enzyme and an electron carrier, plays crucial roles in numerous biological functions, including cellular metabolism and antioxidation. Because NADP is subcellularmembrane impermeable, eukaryotes compartmentalize NAD kinases (NADKs), the NADP biosynthetic enzymes. Mitochondria are fundamental organelles for energy production through oxidative phosphorylation. Ten years after the discovery of the mitochondrial NADK (known as MNADK or NADK2), a significant amount of knowledge has been obtained regarding its functions, mechanism of action, human biology, mouse models, crystal structures, and post-translation modifications. NADK2 phosphorylates NAD(H) to generate mitochondrial NADP(H). NADK2-deficient patients suffered from hyperlysinemia, elevated plasma C10:2-carnitine (due to the inactivity of relevant NADP-dependent enzymes), and neuronal development defects. Nadk2-deficient mice recapitulate key features of NADK2-deficient patients, including metabolic and neuronal abnormalities. Crystal structures of human NADK2 show a dimer, with the NADP+-binding site located at the dimer interface. NADK2 activity is highly regulated by post-translational modifications, including S188 phosphorylation, K76 and K304 acetylation, and C193 S-nitrosylation; mutations in each site affect NADK2 activity and function. In mice, hepatic Nadk2 functions as a major metabolic regulator upon increased energy demands by regulating sirtuin 3 activity and fatty acid oxidation. Hopefully, future research on NADK2 will not only elucidate its functional roles in health and disease but will also pave the way for novel therapeutics for both rare and common diseases, including NADK2 deficiency and metabolic syndrome.
引用
收藏
页数:7
相关论文
共 45 条
[1]   The phosphate makes a difference: cellular functions of NADP [J].
Agledal, Line ;
Niere, Marc ;
Ziegler, Mathias .
REDOX REPORT, 2010, 15 (01) :2-10
[2]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[3]   The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications [J].
Carrico, Chris ;
Meyer, Jesse G. ;
He, Wenjuan ;
Gibson, Brad W. ;
Verdin, Eric .
CELL METABOLISM, 2018, 27 (03) :497-512
[4]   Cross talk between mitochondria and NADPH oxidases [J].
Dikalov, Sergey .
FREE RADICAL BIOLOGY AND MEDICINE, 2011, 51 (07) :1289-1301
[5]   Structure of human NADK2 reveals atypical assembly and regulation of NAD kinases from animal mitochondria [J].
Du, Jin ;
Estrella, Michael ;
Solorio-Kirpichyan, Kristina ;
Jeffrey, Philip D. ;
Korennykh, Alexei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (26)
[6]   Pyridine Dinucleotides from Molecules to Man [J].
Fessel, Joshua P. ;
Oldham, William M. .
ANTIOXIDANTS & REDOX SIGNALING, 2018, 28 (03) :180-212
[7]   Deletion of nicotinamide nucleotide transhydrogenase - A new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice [J].
Freeman, Helen C. ;
Hugill, Alison ;
Dear, Neil T. ;
Ashcroft, Frances M. ;
Cox, Roger D. .
DIABETES, 2006, 55 (07) :2153-2156
[8]   A Quantitative Map of the Liver Mitochondrial Phosphoproteome Reveals Posttranslational Control of Ketogenesis [J].
Grimsrud, Paul A. ;
Carson, Joshua J. ;
Hebert, Alex S. ;
Hubler, Shane L. ;
Niemi, Natalie M. ;
Bailey, Derek J. ;
Jochem, Adam ;
Stapleton, Donald S. ;
Keller, Mark P. ;
Westphall, Michael S. ;
Yandell, Brian S. ;
Attie, Alan D. ;
Coon, Joshua J. ;
Pagliarini, David J. .
CELL METABOLISM, 2012, 16 (05) :672-683
[9]   Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia [J].
Houten, Sander M. ;
Denis, Simone ;
te Brinke, Heleen ;
Jongejan, Aldo ;
van Kampen, Antoine H. C. ;
Bradley, Edward J. ;
Baas, Frank ;
Hennekam, Raoul C. M. ;
Millington, David S. ;
Young, Sarah P. ;
Frazier, Dianne M. ;
Gucsavas-Calikoglu, Muge ;
Wanders, Ronald J. A. .
HUMAN MOLECULAR GENETICS, 2014, 23 (18) :5009-5016
[10]   Genetic basis of hyperlysinemia [J].
Houten, Sander M. ;
te Brinke, Heleen ;
Denis, Simone ;
Ruiter, Jos P. N. ;
Knegt, Alida C. ;
de Klerk, Johannis B. C. ;
Augoustides-Savvopoulou, Persephone ;
Haeberle, Johannes ;
Baumgartner, Matthias R. ;
Coskun, Turgay ;
Zschocke, Johannes ;
Sass, Joern Oliver ;
Poll-The, Bwee Tien ;
Wanders, Ronald J. A. ;
Duran, Marinus .
ORPHANET JOURNAL OF RARE DISEASES, 2013, 8