AIDB-Net: An Attention-Interactive Dual-Branch Convolutional Neural Network for Hyperspectral Pansharpening

被引:2
|
作者
Sun, Qian [1 ]
Sun, Yu [2 ]
Pan, Chengsheng [1 ]
机构
[1] Nanjing Univ Informat Sci Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Software, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral pansharpening; image super-resolution; deep learning; convolutional neural network; transformer; self-attention mechanism; FUSION; MS;
D O I
10.3390/rs16061044
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite notable advancements achieved on Hyperspectral (HS) pansharpening tasks through deep learning techniques, previous methods are inherently constrained by convolution or self-attention intrinsic defects, leading to limited performance. In this paper, we proposed an Attention-Interactive Dual-Branch Convolutional Neural Network (AIDB-Net) for HS pansharpening. Our model purely consists of convolutional layers and simultaneously inherits the strengths of both convolution and self-attention, especially the modeling of short- and long-range dependencies. Specially, we first extract, tokenize, and align the hyperspectral image (HSI) and panchromatic image (PAN) by Overlapping Patch Embedding Blocks. Then, we specialize a novel Spectral-Spatial Interactive Attention which is able to globally interact and fuse the cross-modality features. The resultant token-global similarity scores can guide the refinement and renewal of the textural details and spectral characteristics within HSI features. By deeply combined these two paradigms, our AIDB-Net significantly improve the pansharpening performance. Moreover, with the acceleration by the convolution inductive bias, our interactive attention can be trained without large scale dataset and achieves competitive time cost with its counterparts. Compared with the state-of-the-art methods, our AIDB-Net makes 5.2%, 3.1%, and 2.2% improvement on PSNR metric on three public datasets, respectively. Comprehensive experiments quantitatively and qualitatively demonstrate the effectiveness and superiority of our AIDB-Net.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A Dual-Branch Detail Extraction Network for Hyperspectral Pansharpening
    Qu, Jiahui
    Hou, Shaoxiong
    Dong, Wenqian
    Xiao, Song
    Du, Qian
    Li, Yunsong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] DCG-Net: Enhanced Hyperspectral Image Classification with Dual-Branch Convolutional Neural Network and Graph Convolutional Neural Network Integration
    Zhu, Wenkai
    Sun, Xueying
    Zhang, Qiang
    ELECTRONICS, 2024, 13 (16)
  • [3] A Dual-Branch Fusion of a Graph Convolutional Network and a Convolutional Neural Network for Hyperspectral Image Classification
    Yang, Pan
    Zhang, Xinxin
    SENSORS, 2024, 24 (14)
  • [4] DCTN: Dual-Branch Convolutional Transformer Network With Efficient Interactive Self-Attention for Hyperspectral Image Classification
    Zhou, Yunfei
    Huang, Xiaohui
    Yang, Xiaofei
    Peng, Jiangtao
    Ban, Yifang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [5] FUSION OF HYPERSPECTRAL AND LIDAR DATA BASED ON DUAL-BRANCH CONVOLUTIONAL NEURAL NETWORK
    Wang, Jinzhe
    Zhang, Junping
    Guo, Qingle
    Li, Tong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3388 - 3391
  • [6] COLLABORATIVE CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA BASED ON DUAL-BRANCH CONVOLUTIONAL NEURAL NETWORK
    Wang, Aili
    Xing, Shuang
    Li, Meixin
    Yang, Yunhong
    Ding, Shanshan
    Wu, Haibin
    Iwahori, Yuji
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2738 - 2741
  • [7] Dual-Branch Spectral–Spatial Attention Network for Hyperspectral Image Classification
    Zhao, Jinling
    Wang, Jiajie
    Ruan, Chao
    Dong, Yingying
    Huang, Linsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [8] Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation
    Jian, Muwei
    Wu, Ronghua
    Chen, Hongyu
    Fu, Lanqi
    Yang, Chengdong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 705 - 716
  • [9] Hyperspectral unmixing method based on dual-branch multiscale residual attention network
    Chen, Congping
    Xu, Zhiwei
    Lu, Peng
    Cao, Nuo
    OPTICAL ENGINEERING, 2023, 62 (09)
  • [10] Hyperspectral Image Classification Based on Dual-Branch Spectral Multiscale Attention Network
    Shi, Cuiping
    Liao, Diling
    Xiong, Yi
    Zhang, Tianyu
    Wang, Liguo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10450 - 10467