Emerging experimental methods to study the thermodynamics of biomolecular condensate formation

被引:2
作者
Ray, Soumik [1 ]
Buell, Alexander K. [1 ]
机构
[1] Tech Univ Denmark, Dept Biotechnol & Biomed, DK-2800 Lyngby, Denmark
关键词
LIQUID PHASE-SEPARATION; PROTEIN SOLUTIONS; BEHAVIOR; INTERFACE; WATER; AGGREGATION;
D O I
10.1063/5.0190160
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The formation of biomolecular condensates in vivo is increasingly recognized to underlie a multitude of crucial cellular functions. Furthermore, the evolution of highly dynamic protein condensates into progressively less reversible assemblies is thought to be involved in a variety of disorders, from cancer over neurodegeneration to rare genetic disorders. There is an increasing need for efficient experimental methods to characterize the thermodynamics of condensate formation and that can be used in screening campaigns to identify and rationally design condensate modifying compounds. Theoretical advances in the field are also identifying the key parameters that need to be measured in order to obtain a comprehensive understanding of the underlying interactions and driving forces. Here, we review recent progress in the development of efficient and quantitative experimental methods to study the driving forces behind and the temporal evolution of biomolecular condensates.
引用
收藏
页数:14
相关论文
共 113 条
  • [1] Liquid-Liquid Phase Separation in Disease
    Alberti, Simon
    Dormann, Dorothee
    [J]. ANNUAL REVIEW OF GENETICS, VOL 53, 2019, 53 : 171 - +
  • [2] Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates
    Alberti, Simon
    Gladfelter, Amy
    Mittag, Tanja
    [J]. CELL, 2019, 176 (03) : 419 - 434
  • [3] Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides
    Alshareedah, Ibraheem
    Moosa, Mahdi Muhammad
    Pham, Matthew
    Potoyan, Davit A.
    Banerjee, Priya R.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Biomolecular condensate phase diagrams with a combinatorial microdroplet platform
    Arter, William E.
    Qi, Runzhang
    Erkamp, Nadia A.
    Krainer, Georg
    Didi, Kieran
    Welsh, Timothy J.
    Acker, Julia
    Nixon-Abell, Jonathan
    Qamar, Seema
    Guillen-Boixet, Jordina
    Franzmann, Titus M.
    Kuster, David
    Hyman, Anthony A.
    Borodavka, Alexander
    George-Hyslop, Peter St
    Alberti, Simon
    Knowles, Tuomas P. J.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Ausserwoger H., 2023, bioRxiv
  • [6] Biomolecular condensates: organizers of cellular biochemistry
    Banani, Salman F.
    Lee, Hyun O.
    Hyman, Anthony A.
    Rosen, Michael K.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) : 285 - 298
  • [7] Sequence self-selection by cyclic phase separation
    Bartolucci, Giacomo
    Serrao, Adriana Calaca
    Schwintek, Philipp
    Kuehnlein, Alexandra
    Rana, Yash
    Janto, Philipp
    Hofer, Dorothea
    Mast, Christof B.
    Braun, Dieter
    Weber, Christoph A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 120 (43)
  • [8] High-Throughput Synthesis and Screening of Functional Coacervates Using Microfluidics
    Beneyton, Thomas
    Love, Celina
    Girault, Mathias
    Tang, T-Y Dora
    Baret, Jean-Christophe
    [J]. CHEMSYSTEMSCHEM, 2020, 2 (06)
  • [9] Mapping Hydration Water around Alcohol Chains by THz Calorimetry
    Boehm, Fabian
    Schwaab, Gerhard
    Havenith, Martina
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (33) : 9981 - 9985
  • [10] Protein Phase Separation: A New Phase in Cell Biology
    Boeynaems, Steven
    Alberti, Simon
    Fawzi, Nicolas L.
    Mittag, Tanja
    Polymenidou, Magdalini
    Rousseau, Frederic
    Schymkowitz, Joost
    Shorter, James
    Wolozin, Benjamin
    Van den Bosch, Ludo
    Tompa, Peter
    Fuxreiter, Monika
    [J]. TRENDS IN CELL BIOLOGY, 2018, 28 (06) : 420 - 435