A linear group pursuit problem with fractional derivatives and different player capabilities

被引:0
|
作者
Machtakova, A., I [1 ,2 ]
机构
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Russian Acad Sci, Inst Math & Mech, Ural Branch, Ul S Kovalevskoi 16, Ekaterinburg 620108, Russia
来源
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA | 2023年 / 62卷
基金
俄罗斯科学基金会;
关键词
differential game; group pursuit; pursuer; evader; fractional derivative; MULTIPLE CAPTURE; GAME; EVADERS; EVASION; CONSTRAINTS; NUMBER;
D O I
10.35634/2226-3594-2023-62-04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a finite-dimensional Euclidean space, the problem of pursuit of one evader by a group of pursuers is considered, described by a system of the form D-(alpha) x(i) = a(i)x(i) + u(i), u(i) is an element of U-i, D-(alpha) y = ay + v, v is an element of V, where D((alpha))f is the Caputo derivative of order alpha is an element of (1, 2) of the function f. Sets of admissible controls U-i, V are convex compacts, a(i), a are real numbers. Terminal sets are convex compacts. Sufficient conditions for the solvability of the problems of pursuit and evasion are obtained. In the study, the method of resolving functions is used as the basic one.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 50 条
  • [41] Linear vibrations of continuum with fractional derivatives
    Demir, Duygu Donmez
    Bildik, Necdet
    Sinir, Berra Gultekin
    BOUNDARY VALUE PROBLEMS, 2013,
  • [42] Diffusion equations and different spatial fractional derivatives
    Basanini Duarte, Alexandre Fernandes
    Gatti Pereira, Jessica de Melo
    Lenzi, Marcelo Kaminski
    Goncalves, Giane
    Rossato, Roberto
    Lenzi, Ervin Kaminski
    ACTA SCIENTIARUM-TECHNOLOGY, 2014, 36 (04) : 657 - 662
  • [43] On linear conflict-controlled processes with fractional derivatives
    Chikrii, A. A.
    Matichin, I. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (02): : 256 - 270
  • [44] Modelling of the hamstring muscle group by use of fractional derivatives
    Grahovac, N. M.
    Zigic, M. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1695 - 1700
  • [45] On a pursuit-evasion problem under a linear change of the pursuer resource
    Samatov B.T.
    Siberian Advances in Mathematics, 2013, 23 (4) : 294 - 302
  • [46] The Cauchy problem for an equation with fractional derivatives in Bessel potential spaces
    Lopushansky, A. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (06) : 1089 - 1097
  • [47] The Cauchy problem for an equation with fractional derivatives in Bessel potential spaces
    A. O. Lopushansky
    Siberian Mathematical Journal, 2014, 55 : 1089 - 1097
  • [48] ANALYTICAL SOLUTIONS TO CONTACT PROBLEM WITH FRACTIONAL DERIVATIVES IN THE SENSE OF CAPUTO
    Noor, Muhammad Aslam
    Rafiq, Muhammad
    Khan, Salah-Ud-Din
    Qureshi, Muhammad Amer
    Kamran, Muhammad
    Khan, Shahab-Ud-Din
    Saeed, Faisal
    Ahmad, Hijaz
    THERMAL SCIENCE, 2020, 24 (01): : S313 - S323
  • [49] Game Problem of Convergence of A Group of Objects With Different Types of Dynamic and Target
    Izmest'ev, I. V.
    Ukhobotov, V. I.
    2018 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), 2018,
  • [50] New Results on a Nonlocal Sturm-Liouville Eigenvalue Problem with Fractional Integrals and Fractional Derivatives
    Zhang, Yunyang
    Chen, Shaojie
    Li, Jing
    FRACTAL AND FRACTIONAL, 2025, 9 (02)