SYNTHETIC-HYDROXYAPATITE-BASED COATINGS ON THE ULTRAFINE-GRAINED TITANIUM AND ZIRCONIUM SURFACE

被引:2
作者
Turdaliev, A. T. [1 ]
Latypova, M. A. [2 ]
Reshotkina, E. N. [3 ]
机构
[1] Int Transport & Humanitarian Univ, 32 Zhetisu 1 Microdist, Alma Ata 050063, Kazakhstan
[2] Karaganda Ind Univ, 30 Republ Ave, Temirtau 101400, Kazakhstan
[3] ArcelorMittal Temirtau Corp, 1 Republ Ave, Temirtau 101400, Kazakhstan
来源
USPEKHI FIZIKI METALLOV-PROGRESS IN PHYSICS OF METALS | 2023年 / 24卷 / 04期
关键词
ultrafine-grained materials; titanium; zirconium; coating; implant; IN-VITRO EVALUATION; MECHANICAL-PROPERTIES; SOL-GEL; ELECTROPHORETIC DEPOSITION; PHASE-COMPOSITION; THIN-FILMS; TI-6AL-4V; MICROSTRUCTURE; STRESS; ALLOY;
D O I
10.15407/ufm.24.04.792
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of biocompatible materials is a multidisciplinary task and requires the interaction of physicists, chemists, biologists, and physicians, since the functional reliability of materials depends on their biochemical, cellular, tissue, and bio mechanical compatibility. This area has been developing intensively in recent years, resulting in numerous research articles. As assumed, the composition of the biocompatible coating of the new generation should coincide as much as possible with the composition of natural human bone and be able to simulate bone tissue on its surface. As a result of the approximation of the phase-structural state and properties of the resulting coatings on implants to the parameters of bone tissue, improved compatibility between them can be achieved. When forming biocompatible coatings, special attention is paid to creating a definite relief (roughness) on the implant surface. There is a current search for new technological solutions for creating a biocompatible rough surface on implants that ensures reliable integration of the implant into bone tissue, since existing technologies do not fully meet state-ofthe-art medical requirements.
引用
收藏
页码:792 / 818
页数:27
相关论文
共 50 条
  • [11] High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium
    Zhao, P.
    Chen, B.
    Kelleher, J.
    Yuan, G.
    Guan, B.
    Zhang, X.
    Tu, S.
    ACTA MATERIALIA, 2019, 174 : 29 - 42
  • [12] Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium
    Purcek, G.
    Yapici, G. G.
    Karaman, I.
    Maier, H. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (06): : 2303 - 2308
  • [13] Microstructure and Mechanical Properties of Nanostructured and Ultrafine-Grained Titanium and the Zirconium Formed by the Method of Severe Plastic Deformation
    Yu. P. Sharkeev
    A. Yu. Eroshenko
    V. I. Danilov
    A. I. Tolmachev
    P. V. Uvarkin
    Yu. A. Abzaev
    Russian Physics Journal, 2014, 56 : 1156 - 1162
  • [14] Microstructure and Mechanical Properties of Nanostructured and Ultrafine-Grained Titanium and the Zirconium Formed by the Method of Severe Plastic Deformation
    Sharkeev, Yu. P.
    Eroshenko, A. Yu.
    Danilov, V. I.
    Tolmachev, A. I.
    Uvarkin, P. V.
    Abzaev, Yu. A.
    RUSSIAN PHYSICS JOURNAL, 2014, 56 (10) : 1156 - 1162
  • [15] Effect of surface etching on the tensile behavior of coarse- and ultrafine-grained pure titanium
    Baek, Seung Mi
    Polyakov, Alexander V.
    Moon, Ji Hyun
    Semenova, Irina P.
    Valiev, Ruslan Z.
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 707 : 337 - 343
  • [16] Dynamic deformation and failure of ultrafine-grained titanium
    Li, Zezhou
    Wang, Bingfeng
    Zhao, Shiteng
    Valiev, Ruslan Z.
    Vecchio, Kenneth S.
    Meyers, Marc A.
    ACTA MATERIALIA, 2017, 125 : 210 - 218
  • [17] Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion
    Wang, Chuan Ting
    Escudeiro, Ana
    Polcar, Tomas
    Cavaleiro, Albano
    Wood, Robert J. K.
    Gao, Nong
    Langdon, Terence G.
    WEAR, 2013, 306 (1-2) : 304 - 310
  • [18] Strength of Products Made of Ultrafine-Grained Titanium for Bone Osteosynthesis
    Klevtsov, Gennadiy V. V.
    Valiev, Ruslan Z. Z.
    Rezyapova, Luiza R. R.
    Klevtsova, Natal'ya A.
    Tyurkov, Maksim N. N.
    Linderov, Mikhail L. L.
    Fesenyuk, Maksim V. V.
    Frolova, Olesya A. A.
    MATERIALS, 2022, 15 (23)
  • [19] Dynamic Recrystallization Model of Ultrafine-Grained Pure Zirconium Refined by Compounding
    Han Peisheng
    Ma Weijie
    Li Yanwei
    Zhu Xiaoyu
    Yang Xirong
    Wang Xiaogang
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (02) : 504 - 510
  • [20] Room Temperature Dynamic Strain Aging in Ultrafine-Grained Titanium
    Lopes, Felipe Perisse D.
    Lu, Chia Hui
    Zhao, Shiteng
    Monteiro, Sergio N.
    Meyers, Marc A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (10): : 4468 - 4477