Self-Supervised Pre-Training for 3-D Roof Reconstruction on LiDAR Data

被引:1
|
作者
Yang, Hongxin [1 ]
Huang, Shangfeng [1 ]
Wang, Ruisheng [1 ,2 ]
Wang, Xin [1 ]
机构
[1] Univ Calgary, Dept Geomatics Engn, Calgary, AB T2N 1N4, Canada
[2] Shenzhen Univ, Sch Architecture & Urban Planning, Shenzhen 518060, Peoples R China
关键词
Corner detection; Training; Task analysis; edge prediction; roof reconstruction; self-supervised learning;
D O I
10.1109/LGRS.2024.3362733
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Reconstructing building roofs from light detection and ranging (LiDAR) point clouds from aerial perspectives is significantly important in photogrammetry domains. This letter proposes a novel approach for 3-D real-world building roof reconstruction in Estonia, employing a two-stage self-supervised pre-training architecture to transform 3-D roof point clouds into wireframe models. We utilize a self-supervised pre-training framework that incorporates a purpose-designed and efficient self-attention mechanism to generate point-wise features. Subsequently, we develop modules for corner detection and edge prediction to classify and regress the coordinates of corner points and determine optimal edge selections, respectively, to construct the final wireframe model. The effectiveness of our approach is evaluated on real-world roof datasets, achieving corner and edge precision accuracies of 83% and 78%, respectively. In addition, fine-tuning our self-supervised pre-training method with varying ratios of labeled data, particularly with only 50% partially labeled data, attains superior performance, achieving 84% and 85% corner and edge precision, respectively.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] PreTraM: Self-supervised Pre-training via Connecting Trajectory and Map
    Xu, Chenfeng
    Li, Tian
    Tang, Chen
    Sun, Lingfeng
    Keutzer, Kurt
    Tomizuka, Masayoshi
    Fathi, Alireza
    Zhan, Wei
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 34 - 50
  • [22] Text-Guided HuBERT: Self-Supervised Speech Pre-Training via Generative Adversarial Networks
    Ma, Duo
    Yue, Xianghu
    Ao, Junyi
    Gao, Xiaoxue
    Li, Haizhou
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2055 - 2059
  • [23] COMPARISON OF SELF-SUPERVISED SPEECH PRE-TRAINING METHODS ON FLEMISH DUTCH
    Poncelet, Jakob
    Hamme, Hugo Van
    2021 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU), 2021, : 169 - 176
  • [24] Self-Supervised Underwater Image Generation for Underwater Domain Pre-Training
    Wu, Zhiheng
    Wu, Zhengxing
    Chen, Xingyu
    Lu, Yue
    Yu, Junzhi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [25] S3T: SELF-SUPERVISED PRE-TRAINING WITH SWIN TRANSFORMER FOR MUSIC CLASSIFICATION
    Zhao, Hang
    Zhang, Chen
    Zhu, Bilei
    Ma, Zejun
    Zhang, Kejun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 606 - 610
  • [26] Evaluating Task-Specific Augmentations in Self-Supervised Pre-Training for 3D Medical Image Analysis
    Claessens, C. H. B.
    Hamm, J. J. M.
    Viviers, C. G. A.
    Nederend, J.
    Grunhagen, D. J.
    Tanis, P. J.
    de With, P. H. N.
    van der Sommen, F.
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [27] Masked Deformation Modeling for Volumetric Brain MRI Self-Supervised Pre-Training
    Lyu, Junyan
    Bartlett, Perry F.
    Nasrallah, Fatima A.
    Tang, Xiaoying
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (03) : 1596 - 1607
  • [28] Self-supervised depth super-resolution with contrastive multiview pre-training
    Qiao, Xin
    Ge, Chenyang
    Zhao, Chaoqiang
    Tosi, Fabio
    Poggi, Matteo
    Mattoccia, Stefano
    NEURAL NETWORKS, 2023, 168 : 223 - 236
  • [29] Reducing Barriers to Self-Supervised Learning: HuBERT Pre-training with Academic Compute
    Chen, William
    Chang, Xuankai
    Peng, Yifan
    Ni, Zhaoheng
    Maiti, Soumi
    Watanabe, Shinji
    INTERSPEECH 2023, 2023, : 4404 - 4408
  • [30] Self-supervised pre-training improves fundus image classification for diabetic retinopathy
    Lee, Joohyung
    Lee, Eung-Joo
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2022, 2022, 12102