Representability and Dynamical Consistency in Coarse-Grained Models

被引:1
|
作者
Banos, Manuel Palma [1 ]
Popov, Alexander V. [1 ]
Hernandez, Rigoberto [1 ,2 ,3 ]
机构
[1] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 06期
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; POTENTIALS; WATER;
D O I
10.1021/acs.jpcb.3c08054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We address the challenge of representativity and dynamical consistency when unbonded fine-grained particles are collected together into coarse-grained particles. We implement a hybrid procedure for identifying and tracking the underlying fine-grained particles & horbar;e.g., atoms or molecules & horbar;by exchanging them between the coarse-grained particles periodically at a characteristic time. The exchange involves a back-mapping of the coarse-grained particles into fine-grained particles and a subsequent reassignment to coarse-grained particles conserving total mass and momentum. We find that an appropriate choice of the characteristic exchange time can lead to the correct effective diffusion rate of the fine-grained particles when simulated in hybrid coarse-grained dynamics. In the compressed (supercritical) fluid regime, without the exchange term, fine-grained particles remain associated with a given coarse-grained particle, leading to substantially lower diffusion rates than seen in all-atom molecular dynamics of the fine-grained particles. Thus, this work confirms the need for addressing the representativity of fine-grained particles within coarse-grained particles and offers a simple exchange mechanism so as to retain dynamical consistency between the fine- and coarse-grained scales.
引用
收藏
页码:1506 / 1514
页数:9
相关论文
共 50 条
  • [41] Development and Applications of Coarse-Grained Models for RNA
    Hyeon, Changbong
    Denesyuk, Natalia A.
    Thirumalai, D.
    ISRAEL JOURNAL OF CHEMISTRY, 2014, 54 (8-9) : 1358 - 1373
  • [42] Thermodynamics of coarse-grained models of supercooled liquids
    Chandler, D
    Garrahan, JP
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (04):
  • [43] Evidence of information limitations in coarse-grained models
    Khot, Aditi
    Shiring, Stephen B.
    Savoie, Brett M.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (24):
  • [44] Transferable Coarse-Grained Models for Ionic Liquids
    Wang, Yanting
    Feng, Shulu
    Voth, Gregory A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (04) : 1091 - 1098
  • [45] Coarse-Grained Models for Complex Coacervation in Chromatin
    Lebold, Kathryn M.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 225A - 226A
  • [46] Folding Coarse-Grained Oligomer Models with PyRosetta
    Fobe, Theodore L.
    Walker, Christopher C.
    Meek, Garrett A.
    Shirts, Michael R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (10) : 6354 - 6369
  • [47] MARTINI Coarse-Grained Models of Polyethylene and Polypropylene
    Panizon, Emanuele
    Bochicchio, Davide
    Monticelli, Luca
    Rossi, Giulia
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (25): : 8209 - 8216
  • [48] Perspective: Coarse-grained models for biomolecular systems
    Noid, W. G.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (09):
  • [49] Developing coarse-grained models for agglomerate growth
    Smiljanic, Milena
    Weeber, Rudolf
    Pflueger, Dirk
    Holm, Christian
    Kronenburg, Andreas
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 227 (14): : 1515 - 1527
  • [50] Machine-Learned Coarse-Grained Models
    Bejagam, Karteek K.
    Singh, Samrendra
    An, Yaxin
    Deshmukh, Sanket A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16): : 4667 - 4672