C*-ALGEBRAS ASSOCIATED TO HOMEOMORPHISMS TWISTED BY VECTOR BUNDLES OVER FINITE DIMENSIONAL SPACES

被引:0
作者
Adamo, Maria Stella [1 ]
Archey, Dawn E. [2 ]
Forough, Marzieh [3 ,4 ]
Georgescu, Magdalena C.
Jeong, J. A. A. [5 ,6 ]
Strung, Karen R. [7 ]
Viola, Maria Grazia [8 ,9 ]
机构
[1] Univ Tokyo, Dept Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Univ Detroit Mercy, Dept Math, 4001 W McNichols Rd, Detroit, MI 48221 USA
[3] Czech Acad Sci, Inst Math, Dept Abstract Anal, Zitnia 25, Prague 11567 1, Czech Republic
[4] Czech Tech Univ, Fac Informat Technol, Dept Appl Math, Thakurova 9, Prague 16000 6, Czech Republic
[5] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[6] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[7] Czech Acad Sci, Inst Math, Dept Abstract Anal, Zitna 25, Prague 11567 1, Czech Republic
[8] Lakehead Univ, Orillia, ON L3V 0B9, Canada
[9] Fields Inst, 222 Coll St, Toronto, ON M5T 3J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Minimal homeomorphisms; C*-correspondences; classification of nuclear C*-algebras; COVERING DIMENSION; CROSSED-PRODUCTS; STABLE RANK; MINIMAL HOMEOMORPHISMS; MORITA EQUIVALENCE; NUCLEAR DIMENSION; ROKHLIN DIMENSION; K-THEORY; ISOMORPHISM; DYNAMICS;
D O I
10.1090/tran/8900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study Cuntz-Pimsner algebras associated to C*- correspondences over commutative C*- algebras from the point of view of the C*- algebra classification programme. We show that when the correspondence comes from an aperiodic homeomorphism of a finite dimensional infinite compact metric space X twisted by a vector bundle, the resulting Cuntz-Pimsner algebras have finite nuclear dimension. When the homeomorphism is minimal, this entails classification of these C*- algebras by the Elliott invariant. This establishes a dichotomy: when the vector bundle has rank one, the Cuntz-Pimsner algebra has stable rank one. Otherwise, it is purely infinite. For a Cuntz-Pimsner algebra of a minimal homeomorphism of an infinite compact metric space X twisted by a line bundle over X, we introduce orbit-breaking subalgebras. With no assumptions on the dimension of X, we show that they are centrally large subalgebras and hence simple and stably finite. When the dimension of X is finite, they are furthermore Z- stable and hence classified by the Elliott invariant.
引用
收藏
页码:1597 / 1640
页数:44
相关论文
共 66 条
[51]   C*-algebras of minimal dynamical systems of the product of a Cantor set and an odd dimensional sphere [J].
Strung, Karen R. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (03) :671-689
[52]   MINIMAL DYNAMICS AND Z-STABLE CLASSIFICATION [J].
Strung, Karen R. ;
Winter, Wilhelm .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (01) :1-23
[53]  
Swan Richard G., 1962, Transactions of the American Mathematical Society, V105, P264
[54]   The Rokhlin dimension of topological Zm-actions [J].
Szabo, Gabor .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 :673-694
[55]   Quasidiagonality of nuclear C**-algebras [J].
Tikuisis, Aaron ;
White, Stuart ;
Winter, Wilhelm .
ANNALS OF MATHEMATICS, 2017, 185 (01) :229-284
[56]  
Toms A, 2005, J REINE ANGEW MATH, V578, P185
[57]   Minimal Dynamics and K-Theoretic Rigidity: Elliott's Conjecture [J].
Toms, Andrew S. ;
Winter, Wilhelm .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (01) :467-481
[58]   Continuous fields of C*-algebras arising from extensions of tensor C*-categories [J].
Vasselli, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (01) :122-152
[59]   Simple C*-algebras with perforation [J].
Villadsen, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) :110-116
[60]   On the stable rank of simple C*-algebras [J].
Villadsen, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1091-1102