C*-ALGEBRAS ASSOCIATED TO HOMEOMORPHISMS TWISTED BY VECTOR BUNDLES OVER FINITE DIMENSIONAL SPACES

被引:0
作者
Adamo, Maria Stella [1 ]
Archey, Dawn E. [2 ]
Forough, Marzieh [3 ,4 ]
Georgescu, Magdalena C.
Jeong, J. A. A. [5 ,6 ]
Strung, Karen R. [7 ]
Viola, Maria Grazia [8 ,9 ]
机构
[1] Univ Tokyo, Dept Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Univ Detroit Mercy, Dept Math, 4001 W McNichols Rd, Detroit, MI 48221 USA
[3] Czech Acad Sci, Inst Math, Dept Abstract Anal, Zitnia 25, Prague 11567 1, Czech Republic
[4] Czech Tech Univ, Fac Informat Technol, Dept Appl Math, Thakurova 9, Prague 16000 6, Czech Republic
[5] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[6] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[7] Czech Acad Sci, Inst Math, Dept Abstract Anal, Zitna 25, Prague 11567 1, Czech Republic
[8] Lakehead Univ, Orillia, ON L3V 0B9, Canada
[9] Fields Inst, 222 Coll St, Toronto, ON M5T 3J1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Minimal homeomorphisms; C*-correspondences; classification of nuclear C*-algebras; COVERING DIMENSION; CROSSED-PRODUCTS; STABLE RANK; MINIMAL HOMEOMORPHISMS; MORITA EQUIVALENCE; NUCLEAR DIMENSION; ROKHLIN DIMENSION; K-THEORY; ISOMORPHISM; DYNAMICS;
D O I
10.1090/tran/8900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study Cuntz-Pimsner algebras associated to C*- correspondences over commutative C*- algebras from the point of view of the C*- algebra classification programme. We show that when the correspondence comes from an aperiodic homeomorphism of a finite dimensional infinite compact metric space X twisted by a vector bundle, the resulting Cuntz-Pimsner algebras have finite nuclear dimension. When the homeomorphism is minimal, this entails classification of these C*- algebras by the Elliott invariant. This establishes a dichotomy: when the vector bundle has rank one, the Cuntz-Pimsner algebra has stable rank one. Otherwise, it is purely infinite. For a Cuntz-Pimsner algebra of a minimal homeomorphism of an infinite compact metric space X twisted by a line bundle over X, we introduce orbit-breaking subalgebras. With no assumptions on the dimension of X, we show that they are centrally large subalgebras and hence simple and stably finite. When the dimension of X is finite, they are furthermore Z- stable and hence classified by the Elliott invariant.
引用
收藏
页码:1597 / 1640
页数:44
相关论文
共 66 条
[1]  
Abadie B, 1995, PAC J MATH, V171, P1
[2]   Morita equivalence for crossed products by Hilbert C*-bimodules [J].
Abadie, B ;
Eilers, S ;
Exel, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (08) :3043-3054
[3]   Hilbert C*-bimodules over commutative C*-algebras and an isomorphism condition for quantum Heisenberg manifolds [J].
Abadie, B ;
Exel, R .
REVIEWS IN MATHEMATICAL PHYSICS, 1997, 9 (04) :411-423
[4]   Centrally Large Subalgebras and Tracial Z-Absorption [J].
Archey, Dawn ;
Buck, Julian ;
Phillips, N. Christopher .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (06) :1857-1877
[5]   PERMANENCE OF STABLE RANK ONE FOR CENTRALLY LARGE SUBALGEBRAS AND CROSSED PRODUCTS BY MINIMAL HOMEOMORPHISMS [J].
Archey, Dawn E. ;
Phillips, N. Christopher .
JOURNAL OF OPERATOR THEORY, 2020, 83 (02) :353-389
[6]   Covering Dimension of C*-Algebras and 2-Coloured Classification [J].
Bosa, Joan ;
Brown, Nathanial P. ;
Sato, Yasuhiko ;
Tikuisis, Aaron ;
White, Stuart ;
Winter, Wilhelm .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 257 (1233) :1-+
[7]   QUASI-MULTIPLIERS AND EMBEDDINGS OF HILBERT C-ASTERISK-BIMODULES [J].
BROWN, LG ;
MINGO, JA ;
SHEN, NT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (06) :1150-1174
[8]   STABLE ISOMORPHISM AND STRONG MORITA EQUIVALENCE OF CSTAR-ALGEBRAS [J].
BROWN, LG ;
GREEN, P ;
RIEFFEL, MA .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :349-363
[9]  
Brown N., 2008, Graduate Studies in Mathematics, V88
[10]  
Brown NP, 2018, HOUSTON J MATH, V44, P613