Emergent Geometry of KP Hierarchy

被引:0
作者
Zhou, Jian [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
KP hierarchy; tau-functions; spectral curves; INTEGRABLE HIERARCHIES; PARTITION-FUNCTION; MODULI SPACES; VOLUMES; CURVES;
D O I
10.1007/s10114-024-1492-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explain how to construct a quantum deformation of a spectral curve associated to a tau-function of the KP hierarchy. This construction is applied to Witten-Kontsevich tau-function to give a natural explanation of some earlier work. We also apply it to higher Weil-Petersson volumes and Witten's r-spin intersection numbers.
引用
收藏
页码:3 / 25
页数:23
相关论文
共 33 条
  • [1] A MATRIX INTEGRAL SOLUTION TO 2-DIMENSIONAL W(P)-GRAVITY
    ADLER, M
    VANMOERBEKE, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) : 25 - 56
  • [2] Airy Equation for the Topological String Partition Function in a Scaling Limit
    Alim, Murad
    Yau, Shing-Tung
    Zhou, Jie
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (06) : 719 - 729
  • [3] Balogh F., Explicit formula for Witten's r-spin partition function
  • [4] Geometric interpretation of Zhou's explicit formula for the Witten-Kontsevich tau function
    Balogh, Ferenc
    Yang, Di
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (10) : 1837 - 1857
  • [5] Bennett J, 2012, MICH MATH J, V61, P331
  • [6] Correlation functions of the KdV hierarchy and applications to intersection numbers over (M)over-barg,n
    Bertola, Marco
    Dubrovin, Boris
    Yang, Di
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2016, 327 : 30 - 57
  • [7] The Hypergeometric Functions of the Faber-Zagier and Pixton Relations
    Buryak, A.
    Janda, F.
    Pandharipande, R.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2015, 11 (04) : 591 - 631
  • [8] TOPOLOGICAL STRINGS IN D-LESS-THAN-1
    DIJKGRAAF, R
    VERLINDE, H
    VERLINDE, E
    [J]. NUCLEAR PHYSICS B, 1991, 352 (01) : 59 - 86
  • [9] Eynard B, 2007, COMMUN NUMBER THEORY, V1, P347
  • [10] Recursion Between Mumford Volumes of Moduli Spaces
    Eynard, Bertrand
    [J]. ANNALES HENRI POINCARE, 2011, 12 (08): : 1431 - 1447