Gene set correlation enrichment analysis for interpreting and annotating gene expression profiles<mode/>

被引:14
作者
Chang, Lan-Yun [1 ]
Lee, Meng-Zhan [1 ]
Wu, Yujia [1 ]
Lee, Wen-Kai [1 ]
Ma, Chia-Liang [1 ]
Chang, Jun-Mao [1 ]
Chen, Ciao-Wen [1 ]
Huang, Tzu-Chun [1 ]
Lee, Chia-Hwa [2 ,3 ,4 ,5 ]
Lee, Jih-Chin [6 ]
Tseng, Yu-Yao [7 ]
Lin, Chun-Yu [1 ,3 ,8 ,9 ,10 ,11 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu 300, Taiwan
[2] Taipei Med Univ, Coll Med Sci & Technol, Sch Med Lab Sci & Biotechnol, Taipei 235, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2B, Hsinchu 300, Taiwan
[4] Taipei Med Univ, TMU Res Ctr Canc Translat Med, Taipei 110, Taiwan
[5] Taipei Med Univ, Coll Med Sci & Technol, PhD Program Med Biotechnol, New Taipei 235, Taiwan
[6] Triserv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei 110, Taiwan
[7] Shih Chien Univ, Dept Food Sci Nutr & Nutraceut Biotechnol, Taipei 104, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu 300, Taiwan
[9] Natl Yang Ming Chiao Tung Univ, Canc & Immunol Res Ctr, Taipei 112, Taiwan
[10] Natl Yang Ming Chiao Tung Univ, Inst Data Sci & Engn, Hsinchu 300, Taiwan
[11] Kaohsiung Med Univ, Sch Dent, Kaohsiung 807, Taiwan
关键词
COMPREHENSIVE RESOURCE; BIOLOGY APPROACH; MICROARRAY DATA; WEB SERVER; CANCER; NETWORK; PATHWAYS; ONTOLOGY; TOOL; CHEMOTHERAPY;
D O I
10.1093/nar/gkad1187
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pathway analysis, including nontopology-based (non-TB) and topology-based (TB) methods, is widely used to interpret the biological phenomena underlying differences in expression data between two phenotypes. By considering dependencies and interactions between genes, TB methods usually perform better than non-TB methods in identifying pathways that include closely relevant or directly causative genes for a given phenotype. However, most TB methods may be limited by incomplete pathway data used as the reference network or by difficulties in selecting appropriate reference networks for different research topics. Here, we propose a gene set correlation enrichment analysis method, Gscore, based on an expression dataset-derived coexpression network to examine whether a differentially expressed gene (DEG) list (or each of its DEGs) is associated with a known gene set. Gscore is better able to identify target pathways in 89 human disease expression datasets than eight other state-of-the-art methods and offers insight into how disease-wide and pathway-wide associations reflect clinical outcomes. When applied to RNA-seq data from COVID-19-related cells and patient samples, Gscore provided a means for studying how DEGs are implicated in COVID-19-related pathways. In summary, Gscore offers a powerful analytical approach for annotating individual DEGs, DEG lists, and genome-wide expression profiles based on existing biological knowledge. [GRAPHICS]
引用
收藏
页数:19
相关论文
共 116 条
[1]   cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach [J].
Ahmed, Muhammad Bilal ;
Alghamdi, Abdullah A. A. ;
Ul Islam, Salman ;
Lee, Joon-Seok ;
Lee, Young-Sup .
CELLS, 2022, 11 (13)
[2]   Dealing with missing values in large-scale studies: microarray data imputation and beyond [J].
Aittokallio, Tero .
BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) :253-264
[3]   FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes [J].
Al-Shahrour, F ;
Díaz-Uriarte, R ;
Dopazo, J .
BIOINFORMATICS, 2004, 20 (04) :578-580
[4]   Network enrichment analysis: extension of gene-set enrichment analysis to gene networks [J].
Alexeyenko, Andrey ;
Lee, Woojoo ;
Pernemalm, Maria ;
Guegan, Justin ;
Dessen, Philippe ;
Lazar, Vladimir ;
Lehtio, Janne ;
Pawitan, Yudi .
BMC BIOINFORMATICS, 2012, 13
[5]   Global networks of functional coupling in eukaryotes from comprehensive data integration [J].
Alexeyenko, Andrey ;
Sonnhammer, Erik L. L. .
GENOME RESEARCH, 2009, 19 (06) :1107-1116
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]   Rewiring of Genetic Networks in Response to DNA Damage [J].
Bandyopadhyay, Sourav ;
Mehta, Monika ;
Kuo, Dwight ;
Sung, Min-Kyung ;
Chuang, Ryan ;
Jaehnig, Eric J. ;
Bodenmiller, Bernd ;
Licon, Katherine ;
Copeland, Wilbert ;
Shales, Michael ;
Fiedler, Dorothea ;
Dutkowski, Janusz ;
Guenole, Aude ;
van Attikum, Haico ;
Shokat, Kevan M. ;
Kolodner, Richard D. ;
Huh, Won-Ki ;
Aebersold, Ruedi ;
Keogh, Michael-Christopher ;
Krogan, Nevan J. ;
Ideker, Trey .
SCIENCE, 2010, 330 (6009) :1385-1389
[8]   Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer [J].
Bao, Yulong ;
Wang, Li ;
Shi, Lin ;
Yun, Fen ;
Liu, Xia ;
Chen, Yongxia ;
Chen, Chen ;
Ren, Yanni ;
Jia, Yongfeng .
CELLULAR & MOLECULAR BIOLOGY LETTERS, 2019, 24 (1)
[9]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[10]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68