Performance analysis of a solar based novel trigeneration system using cascaded vapor absorption-compression refrigeration system

被引:15
作者
Khan, Yunis [1 ]
Mishra, R. S. [1 ]
机构
[1] Delhi Technol Univ, Dept Mech Engn, Bawana Rd, Delhi 110042, India
关键词
Exergy-energy analysis; Solar power tower plant; Trigeneration; Helium Brayton cycle; Cascaded vapor absorption-compression; refrigeration; EXERGY ANALYSIS; THERMOECONOMIC ANALYSIS; POWER-GENERATION; COMBINED-CYCLE; ENERGY; OPTIMIZATION;
D O I
10.1016/j.ijrefrig.2023.08.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar power tower technique has a strong potential among several solar systems for large-scale power generation. It is crucial to make new, efficient trigeneration unit for solar power tower plant. This work makes a novel supercritical Brayton cycle based combined cycle in which helium is considered as the working fluid for power generation. The cascaded vapor absorption-compression refrigeration system is integrated with traditional Brayton cycle for recovering waste heat to produce additional heating and low temperature cooling effects for food storage. The energy, exergy efficiency and power output of the proposed plant were found as 28.82%, 39.53% and 14,865 kW respectively. The COPcooling and COPheating values were observed as 0.5391 and 1.539 respectively at 850 W/m(2) of direct normal irradiation, 80 degrees C of generator temperature (T-c) and -20 degrees C of evaporator temperature (T-e). Solar sub system is responsible for high exergy destruction around 78.18% (22,763 kW) of total destruction of the overall plant. Moreover, parametric study reveals that performance of trigeneration system is highly affected by the heliostat and receiver efficiency, T-c, T-e and inlet temperature of helium turbine. Also, a comparison with related earlier research has demonstrated that the performance of the current system is superior to that of systems based on the Rankine cycle and supercritical CO2 cycles.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 36 条
  • [1] Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower
    Al-Sulaiman, Fahad A.
    Atif, Maimoon
    [J]. ENERGY, 2015, 82 : 61 - 71
  • [2] Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles
    Al-Sulaiman, Fahad A.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2014, 77 : 441 - 449
  • [3] Investigation of an ejector-cascaded vapor compression-absorption refrigeration cycle powered by linear fresnel and organic rankine cycle
    Askari, Ighball Baniasad
    Ghazizade-Ahsaee, Hossein
    Kasaeian, Alibakhsh
    [J]. ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023, 25 (09) : 9439 - 9484
  • [4] Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm
    Atif, Maimoon
    Al-Sulaiman, Fahad A.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 95 : 1 - 9
  • [5] Thermodynamic performance evaluation of an ejector-enhanced transcritical CO2 parallel compression refrigeration cycle
    Bai, Tao
    Shi, Rongxuan
    Yu, Jianlin
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 149 : 49 - 61
  • [6] Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization
    Bi, Yujing
    Ju, Yonglin
    [J]. ENERGY, 2022, 252
  • [7] Alternative cycles based on carbon dioxide for central receiver solar power plants
    Chacartegui, R.
    Munoz de Escalona, J. M.
    Sanchez, D.
    Monje, B.
    Sanchez, T.
    [J]. APPLIED THERMAL ENGINEERING, 2011, 31 (05) : 872 - 879
  • [8] A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles
    Chai, Lei
    Tassou, Savvas A.
    [J]. THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 18
  • [9] Performance analysis of a hybrid solar-driven cooler for refrigerator vehicle
    Eletri, Houda
    Salilih, Elias M.
    Hamed, Mouna
    Fellah, Ali
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 153 : 281 - 295
  • [10] Performance simulation of expander-compressor boosted subcooling refrigeration system
    Erdinc, Mehmet Tahir
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 149 : 237 - 247