Cycle-to-Cycle Variation Suppression in ReRAM-Based AI Accelerators

被引:1
作者
Fu, Jingyan [1 ]
Liao, Zhiheng [1 ]
Wang, Jinhui [2 ]
机构
[1] North Dakota State Univ, Elect & Comp Engn, Fargo, ND 58105 USA
[2] Univ S Alabama, Elect & Comp Engn, Mobile, AL USA
来源
2023 IEEE PHYSICAL ASSURANCE AND INSPECTION OF ELECTRONICS, PAINE | 2023年
基金
美国国家科学基金会;
关键词
cycle-to-cycle variation; ReRAM (Resistive Random Access Memory); artificial intelligence; level; pulse; accuracy; energy; latency; MEMRISTOR; PERFORMANCE;
D O I
10.1109/PAINE58317.2023.10317995
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a non-volatile memory, currently ReRAM (Resistive Random Access Memory) is emerging for the low power and high performance AI accelerator design. However, ReRAM always suffer from significant cycle-to-cycle variations, which significantly degrades the inference accuracy. In this study, we firstly fabricate ReRAM wafers and test them. Then we propose both level optimization and pulse regulation methods to mitigate the adverse impact of cycle-to-cycle variations of ReRAM, improve the inference accuracy, lower the energy consumption, and decrease the latency of the AI accelerators.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 30 条
  • [1] Subfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices
    Baeumer, Christoph
    Valenta, Richard
    Schmitz, Christoph
    Locatelli, Andrea
    Mentes, Tevfik Onur
    Rogers, Steven P.
    Sala, Alessandro
    Raab, Nicolas
    Nemsak, Slavomir
    Shim, Moonsub
    Schneider, Claus M.
    Menzel, Stephan
    Waser, Rainer
    Dittmann, Regina
    [J]. ACS NANO, 2017, 11 (07) : 6921 - 6929
  • [2] NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning
    Chen, Pai-Yu
    Peng, Xiaochen
    Yu, Shimeng
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (12) : 3067 - 3080
  • [3] Chen PY, 2015, ICCAD-IEEE ACM INT, P194, DOI 10.1109/ICCAD.2015.7372570
  • [4] MEMRISTOR - MISSING CIRCUIT ELEMENT
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05): : 507 - +
  • [5] Edstrom J, 2019, IEEE ACCESS, V7, P47479, DOI [10.1109/ACCESS.2019.2908997, 10.1109/access.2019.2908997]
  • [6] Level Scaling and Pulse Regulating to Mitigate the Impact of the Cycle-to-Cycle Variation in Memristor-Based Edge AI System
    Fu, Jingyan
    Liao, Zhiheng
    Wang, Jinhui
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (04) : 1752 - 1762
  • [7] Cycle-to-cycle Variation Enabled Energy Efficient Privacy Preserving Technology in ANN
    Fu, Jingyan
    Liao, Zhiheng
    Wang, Jinhui
    [J]. 2020 IEEE 33RD INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2020, : 66 - 71
  • [8] Memristor-Based Variation-Enabled Differentially Private Learning Systems for Edge Computing in IoT
    Fu, Jingyan
    Liao, Zhiheng
    Liu, Jianqing
    Smith, Scott C.
    Wang, Jinhui
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9672 - 9682
  • [9] Memristor-Based Neuromorphic Hardware Improvement for Privacy-Preserving ANN
    Fu, Jingyan
    Liao, Zhiheng
    Wang, Jinhui
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2019, 27 (12) : 2745 - 2754
  • [10] Mitigating Nonlinear Effect of Memristive Synaptic Device for Neuromorphic Computing
    Fu, Jingyan
    Liao, Zhiheng
    Gong, Na
    Wang, Jinhui
    [J]. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2019, 9 (02) : 377 - 387