TraHGR: Transformer for Hand Gesture Recognition via Electromyography

被引:20
作者
Zabihi, Soheil [1 ]
Rahimian, Elahe [2 ]
Asif, Amir [3 ]
Mohammadi, Arash [2 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 2W1, Canada
[2] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 2W1, Canada
[3] York Univ, Dept Elect Engn & Comp Sci, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Feature extraction; Transformers; Gesture recognition; Task analysis; Convolutional neural networks; Computer architecture; Electrodes; Electromyogram (EMG); deep neural networks (DNNs); machine learning (ML); transformers; prosthetic; classification; hand gesture; SURFACE EMG; PATTERN-RECOGNITION; SEMG; ROBUST; EXTRACTION; CHANNEL; NUMBER;
D O I
10.1109/TNSRE.2023.3324252
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning-based Hand Gesture Recognition (HGR) via surface Electromyogram (sEMG) signals have recently shown considerable potential for development of advanced myoelectric-controlled prosthesis. Although deep learning techniques can improve HGR accuracy compared to their classical counterparts, classifying hand movements based on sparse multichannel sEMG signals is still a challenging task. Furthermore, existing deep learning approaches, typically, include only one model as such can hardly extract representative features. In this paper, we aim to address this challenge by capitalizing on the recent advances in hybrid models and transformers. In other words, we propose a hybrid framework based on the transformer architecture, which is a relatively new and revolutionizing deep learning model. The proposed hybrid architecture, referred to as the Transformer for Hand Gesture Recognition (TraHGR), consists of two parallel paths followed by a linear layer that acts as a fusion center to integrate the advantage of each module. We evaluated the proposed architecture TraHGR based on the commonly used second Ninapro dataset, referred to as the DB2. The sEMG signals in the DB2 dataset are measured in real-life conditions from 40 healthy users, each performing 49 gestures. We have conducted an extensive set of experiments to test and validate the proposed TraHGR architecture, and compare its achievable accuracy with several recently proposed HGR classification algorithms over the same dataset. We have also compared the results of the proposed TraHGR architecture with each individual path and demonstrated the distinguishing power of the proposed hybrid architecture. The recognition accuracies of the proposed TraHGR architecture for the window of size 200ms and step size of 100ms are 86.00%, 88.72%, 81.27%, and 93.74%, which are 2.30%, 4.93%, 8.65%, and 4.20% higher than the state-of-the-art performance for DB2 (49 gestures), DB2-B (17 gestures), DB2-C (23 gestures), and DB2-D (9 gestures), respectively.
引用
收藏
页码:4211 / 4224
页数:14
相关论文
共 60 条
[1]   A Deep Transfer Learning Approach to Reducing the Effect of Electrode Shift in EMG Pattern Recognition-Based Control [J].
Ameri, Ali ;
Akhaee, Mohammad Ali ;
Scheme, Erik ;
Englehart, Kevin .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (02) :370-379
[2]   Regression convolutional neural network for improved simultaneous EMG control [J].
Ameri, Ali ;
Akhaee, Mohammad Ali ;
Scheme, Erik ;
Englehart, Kevin .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (03)
[3]   Feature-Classifier Pairing Compatibility for sEMG Signals in Hand Gesture Recognition under Joint Effects of Processing Procedures [J].
Asfour, Mohammed ;
Menon, Carlo ;
Jiang, Xianta .
BIOENGINEERING-BASEL, 2022, 9 (11)
[4]   Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands [J].
Atzori, Manfredo ;
Cognolato, Matteo ;
Mueller, Henning .
FRONTIERS IN NEUROROBOTICS, 2016, 10
[5]   Electromyography data for non-invasive naturally-controlled robotic hand prostheses [J].
Atzori, Manfredo ;
Gijsberts, Arjan ;
Castellini, Claudio ;
Caputo, Barbara ;
Hager, Anne-Gabrielle Mittaz ;
Elsig, Simone ;
Giatsidis, Giorgio ;
Bassetto, Franco ;
Muller, Henning .
SCIENTIFIC DATA, 2014, 1
[6]   Characterization of a Benchmark Database for Myoelectric Movement Classification [J].
Atzori, Manfredo ;
Gijsberts, Arjan ;
Kuzborskij, Ilja ;
Elsig, Simone ;
Hager, Anne-Gabrielle Mittaz ;
Deriaz, Olivier ;
Castellini, Claudio ;
Mueller, Henning ;
Caputo, Barbara .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2015, 23 (01) :73-83
[7]  
Brown TB, 2020, Arxiv, DOI [arXiv:2005.14165, DOI 10.48550/ARXIV.2005.14165, 10.48550/arXiv.2005.14165]
[8]  
Ba J. L., 2016, Layer normalization
[9]  
Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, DOI 10.48550/ARXIV.1803.01271]
[10]   Toward Robust, Adaptiveand Reliable Upper-Limb Motion Estimation Using Machine Learning and Deep Learning-A Survey in Myoelectric Control [J].
Bao, Tianzhe ;
Xie, Sheng Quan ;
Yang, Pengfei ;
Zhou, Ping ;
Zhang, Zhi-Qiang .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (08) :3822-3835