The mechanism of hcp-bcc phase transformation in Mg single crystal under high pressure

被引:12
作者
Zhou, Jia-Ning [1 ]
Guo, Ya-Fang [1 ]
Ren, Jing-Yuan [1 ]
Tang, Xiao-Zhi [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Phys Sci & Engn, Dept Mech, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase transformation; Bcc; Hcp; Mg; Molecular dynamics simulations; TRANSITION; TEMPERATURE; LATTICE; IRON;
D O I
10.1016/j.scriptamat.2023.115670
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The mechanism of phase transformation from hexagonal close-packed (hcp) to body-centered-cubic (bcc) structure in Mg single crystal under high pressure is studied by molecular dynamics (MD) simulations. The hcpbcc phase transformation is achieved by a shear-shuffle mechanism, through the formation of bcc nanotwinned structure and the subsequent detwinning. The nanotwinned structure can effectively accommodate the shear caused by the hcp-bcc phase transformation, which facilities the growth of bcc phase under hydrostatic pressure. The detwinning turns the bcc nanotwinned structure into bcc nano-polycrystalline. Two twinning modes with the opposite twinning shear occur during the detwinning, which can accommodate the shear in different directions. The mechanism of hcp-bcc phase transformation revealed in this work brings out a comprehensive understanding of the plastic mechanism under high pressure, which is helpful for the further materials design under high pressure.
引用
收藏
页数:5
相关论文
共 33 条
[1]   On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium [J].
Burgers, WG .
PHYSICA, 1934, 1 :561-586
[2]   Transitory phase transformations during {10(1)over-bar2} twinning in titanium [J].
Chen, Peng ;
Wang, Fangxi ;
Li, Bin .
ACTA MATERIALIA, 2019, 171 :65-78
[3]   Phase transformation of iron under shock compression: Effects of voids and shear stress [J].
Cui, Xinlin ;
Zhu, Wenjun ;
He, Hongliang ;
Deng, Xiaoliang ;
Li, Yingjun .
PHYSICAL REVIEW B, 2008, 78 (02)
[4]   Rare twin linked to high-pressure phase transition in iron [J].
Dougherty, L. M. ;
Gray, G. T., III ;
Cerreta, E. K. ;
McCabe, R. J. ;
Field, R. D. ;
Bingert, J. F. .
SCRIPTA MATERIALIA, 2009, 60 (09) :772-775
[5]  
Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
[6]   Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins [J].
Fu, Hui ;
Ge, Bincheng ;
Xin, Yunchang ;
Wu, Ruizhi ;
Fernandez, Carlos ;
Huang, Jianyu ;
Peng, Qiuming .
NANO LETTERS, 2017, 17 (10) :6117-6124
[7]   Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron [J].
Guo, Ya-Fang ;
Wang, Yue-Sheng ;
Zhao, Dong-Liang .
ACTA MATERIALIA, 2007, 55 (01) :401-407
[8]   Analysis of the x-ray diffraction signal for the α-ε transition in shock-compressed iron:: Simulation and experiment [J].
Hawreliak, J. ;
Colvin, J. D. ;
Eggert, J. H. ;
Kalantar, D. H. ;
Lorenzana, H. E. ;
Stolken, J. S. ;
Davies, H. M. ;
Germann, T. C. ;
Holian, B. L. ;
Kadau, K. ;
Lomdahl, P. S. ;
Higginbotham, A. ;
Rosolankova, K. ;
Sheppard, J. ;
Wark, J. S. .
PHYSICAL REVIEW B, 2006, 74 (18)
[9]   Quantum mechanics based multiscale modeling of stress-induced phase transformations in iron [J].
Lew, A ;
Caspersen, K ;
Carter, EA ;
Ortiz, M .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (06) :1276-1303
[10]   Deformation twinning in nanocrystalline copper at room temperature and low strain rate [J].
Liao, XZ ;
Zhao, YH ;
Srinivasan, SG ;
Zhu, YT ;
Valiev, RZ ;
Gunderov, DV .
APPLIED PHYSICS LETTERS, 2004, 84 (04) :592-594