Consensus Strategies for a Hegselmann-Krause Model with Leadership and Time Variable Time Delay

被引:4
|
作者
Paolucci, Alessandro [1 ]
Pignotti, Cristina [1 ]
机构
[1] Univ Laquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
CUCKER-SMALE MODEL; OPINION DYNAMICS; EMERGENT BEHAVIOR; FLOCKING; CONVERGENCE; WEIGHTS; STATE;
D O I
10.1007/s10884-023-10276-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze Hegselmann-Krause opinion formation models with leadership in presence of time delay effects. In particular, we consider a model with a pointwise time variable time delay and a model with a distributed delay. In both cases we show that, when the delays satisfy suitable smallness conditions, then the leader can control the system, leading the group to any prefixed state. Some numerical tests illustrate our analytical results.
引用
收藏
页码:3207 / 3232
页数:26
相关论文
共 50 条
  • [1] Consensus of the Hegselmann-Krause opinion formation model with time delay
    Choi, Young-Pil
    Paolucci, Alessandro
    Pignotti, Cristina
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4560 - 4579
  • [2] Consensus for Hegselmann-Krause type models with time variable time delays
    Continelli, Elisa
    Pignotti, Cristina
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 18916 - 18934
  • [3] Consensus in the Hegselmann-Krause Model
    Lanchier, Nicolas
    Li, Hsin-Lun
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (03)
  • [4] Convergence to Consensus for a Hegselmann-Krause-Type Model with Distributed Time Delay
    Paolucci, Alessandro
    MINIMAX THEORY AND ITS APPLICATIONS, 2021, 6 (02): : 379 - 394
  • [5] Consensus Stability in the Hegselmann-Krause Model with Coopetition and Cooperosity
    Tangredi, Domenico
    Iervolino, Raffaele
    Vasca, Francesco
    IFAC PAPERSONLINE, 2017, 50 (01): : 11920 - 11925
  • [6] Termination Time of Multidimensional Hegselmann-Krause Opinion Dynamics
    Etesami, Seyed Rasoul
    Basar, Tamer
    Nedic, Angelia
    Touri, Behrouz
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1255 - 1260
  • [7] Optimal control of the freezing time in the Hegselmann-Krause dynamics
    Kurz, Sascha
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (08) : 633 - 648
  • [8] Extending the Hegselmann-Krause Model I
    Douven, Igor
    Riegler, Alexander
    LOGIC JOURNAL OF THE IGPL, 2010, 18 (02) : 323 - 335
  • [9] Opinion consensus of modified Hegselmann-Krause models
    Yang, Yuecheng
    Dimarogonas, Dimos V.
    Hu, Xiaoming
    AUTOMATICA, 2014, 50 (02) : 622 - 627
  • [10] CONVERGENCE TO CONSENSUS RESULTS FOR HEGSELMANN-KRAUSE TYPE MODELS WITH ATTRACTIVE-LACKING INTERACTION
    Continelli, Elisa
    Pignotti, Cristina
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2024, 14 (04) : 1408 - 1427