Synthetic lung ultrasound data generation using autoencoder with generative adversarial network

被引:0
|
作者
Fatima, Noreen [1 ]
Inchingolo, Riccardo
Smargiassi, Andrea [2 ]
Soldati, Gino [3 ]
Torri, Elena [4 ]
Perrone, Tiziano [4 ]
Demi, Libertario
机构
[1] Univ Trento, Informat Eng & Comput Sci, Via Calepina14, I-38122 Trento, TN, Italy
[2] Dept Med & Surg Sci, Pulm Med Unit, Rome, Italy
[3] Valle Serchio Gen Hosp, Diagnost & Intervent Ultrasound Unit, Lucca, Italy
[4] Dipartimento Emergenza Urgenza, Humanitas Gavazzeni Bergamo, Brescia, Italy
来源
关键词
D O I
10.1121/10.0018618
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Variational Autoencoder Generative Adversarial Network for Synthetic Data Generation in Smart Home
    Razghandi, Mina
    Zhou, Hao
    Erol-Kantarci, Melike
    Turgut, Damla
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 4781 - 4786
  • [2] A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network
    Akkem, Yaganteeswarudu
    Biswas, Saroj Kumar
    Varanasi, Aruna
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [3] Synthetic Energy Data Generation Using Time Variant Generative Adversarial Network
    Asre, Shashank
    Anwar, Adnan
    ELECTRONICS, 2022, 11 (03)
  • [4] Empirical Evaluation on Synthetic Data Generation with Generative Adversarial Network
    Lu, Pei-Hsuan
    Wang, Pang-Chieh
    Yu, Chia-Mu
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, MINING AND SEMANTICS (WIMS 2019), 2019,
  • [5] Evaluation of a Fintech Sales Synthetic Data Generation Model Using a Generative Adversarial Network
    Lopez, Felipe A.
    Duran-Riveros, Marcia
    Maldonado-Duran, Sebastian
    Ruete, David
    Costa, Giannina
    Coronado-Hernandez, Jairo R.
    Gatica, Gustavo
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT VI, 2024, 14820 : 56 - 70
  • [6] Synthetic Dynamic PMU Data Generation: A Generative Adversarial Network Approach
    Zheng, Xiangtian
    Wang, Bin
    Xie, Le
    2019 INTERNATIONAL CONFERENCE ON SMART GRID SYNCHRONIZED MEASUREMENTS AND ANALYTICS (SGSMA), 2019,
  • [7] Synthetic data generation using generative adversarial network for tokamak plasma current quench experiments
    Dave, Bhrugu
    Patel, Sarthak
    Shivani, Rishi
    Purohit, Shishir
    Chaudhury, Bhaskar
    CONTRIBUTIONS TO PLASMA PHYSICS, 2023, 63 (5-6)
  • [8] Land Clutter Data Generation Using Generative Adversarial Network
    Dang, Xunwang
    Chen, Yong
    Wang, Chao
    Yin, Hongcheng
    Xu, Honglei
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [9] Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
    Nik, Alireza Hossein Zadeh
    Riegler, Michael A.
    Halvorsen, Pal
    Storas, Andrea M.
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 434 - 446
  • [10] Generative Adversarial Network for Synthetic Time Series Data Generation in Smart Grids
    Zhang, Chi
    Kuppannagari, Sanmukh R.
    Kannan, Rajgopal
    Prasanna, Viktor K.
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,