Effect of Cu and Zn on the performance of Cu-Mn-Zn/ZrO2 catalysts for CO2 hydrogenation to methanol

被引:12
|
作者
Wang, Shiwei [1 ,2 ]
Yang, Jinhai [1 ]
Wang, Shiqiang [1 ,2 ]
Zhao, Ning [1 ]
Xiao, Fukui [1 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
CO2; hydrogenation; Methanol synthesis; Spinel materials; Oxygen defects; HYDROTALCITE-LIKE PRECURSORS; METAL-ORGANIC FRAMEWORKS; CU/ZN/AL/ZR CATALYSTS; HIGH SELECTIVITY; CARBON-DIOXIDE; OXIDE; ZR; NANOPARTICLES; OXIDATION; PHASE;
D O I
10.1016/j.fuproc.2023.107789
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
CO2 hydrogenation to methanol is an important technology for carbon utilization which not only provides a solution to the greenhouse gas mitigation but also produces value-added products. Copper-based catalyst has always been the research focus of the process. Cu1.5Mn1.5O4 spinel has become an interesting alternative because it contains more oxygen defects and highly dispersed copper species that promote the CO2 adsorption and conversion. In this paper, the effects of Cu and Zn on the performance of Cu-Mn-Zn/ZrO2 catalysts for hydro-genation of CO2 to methanol were studied. It was found that after Zn modification, the catalytic performance of the catalyst was greatly improved. Among all catalysts, Cu3MnZn0.5Zr0.5 has the best CO2 conversion (7.14%) and methanol selectivity (69.74%) at 260 degrees C and 5 MPa. XPS analysis showed that doped Zn replaced the po-sition of Cu in Cu1.5Mn1.5O4 spinel, forming the ZnOx and then increasing the content of oxygen defects, which resulted in the higher methanol selectivity. The increased Cu content promoted the activation of H2 and the rate of *CO3 hydrogenation to *HCOO, which in turn increases the conversion of CO2.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] INFLUENCE OF PREPARATION METHOD ON THE CATALYTIC ACTIVITY OF AU/CU-ZN-AL CATALYSTS FOR CO2 HYDROGENATION TO METHANOL
    Pasupulety, Nagaraju
    Driss, Hafedh
    Alhamed, Yahia Abobakor
    Alzahrani, Abdulrahim Ahmed
    Daous, Muhammad A.
    Petrov, Lachezar
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (12): : 1511 - 1518
  • [22] Highly Dispersed Zn Sites on ZrO2 by Flame Spray Pyrolysis for CO2 Hydrogenation to Methanol
    Fujiwara, Kakeru
    Akutsu, Taiki
    Nishijima, Masahiko
    Tada, Shohei
    TOPICS IN CATALYSIS, 2023, 66 (19-20) : 1492 - 1502
  • [23] Investigation of In Promotion on Cu/ZrO2 Catalysts and Application in CO2 Hydrogenation to Methanol
    Marco A. Rossi
    Letícia F. Rasteiro
    Luiz H. Vieira
    Marco A. Fraga
    José M. Assaf
    Elisabete M. Assaf
    Catalysis Letters, 2023, 153 : 2728 - 2744
  • [24] Surface basicity induced Pd doped Cu/ZnO/ZrO2 for selective CO2 hydrogenation to Methanol
    Shrivastaw, Vivek Kumar
    Singh, Gaje
    Panda, Satyajit
    Kaishyop, Jyotishman
    Paul, Subham
    Bordoloi, Ankur
    MOLECULAR CATALYSIS, 2025, 578
  • [25] Improved Cu- and Zn-based catalysts for CO2 hydrogenation to methanol
    Allam, Djaouida
    Bennici, Simona
    Limousy, Lionel
    Hocine, Smain
    COMPTES RENDUS CHIMIE, 2019, 22 (2-3) : 227 - 237
  • [26] The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol
    Bonura, G.
    Cordaro, M.
    Cannilla, C.
    Arena, F.
    Frusteri, F.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 : 152 - 161
  • [27] Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2
    Liu, Xinmei
    Bai, Shaofen
    Zhuang, Huidong
    Yan, Zifeng
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2012, 6 (01) : 47 - 52
  • [28] Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO
    Ren, Hong
    Xu, Cheng-Hua
    Zhao, Hao-Yang
    Wang, Ya-Xue
    Liu, Jie
    Liu, Jian-Ying
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 28 : 261 - 267
  • [29] CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition
    Lawes, Naomi
    Dummer, Nicholas F.
    Fagan, Samantha
    Wielgosz, Oskar
    Gow, Isla E.
    Smith, Louise R.
    Slater, Thomas J. A.
    Davies, Thomas E.
    Aggett, Kieran J.
    Morgan, David J.
    Taylor, Stuart H.
    Hutchings, Graham J.
    Bowker, Michael
    APPLIED CATALYSIS A-GENERAL, 2024, 679
  • [30] Effect of Si-doped Cu/ZrO2on the performance of catalysts for CO2 hydrogenation to methanol
    Dai W.
    Xin Z.
    Huagong Xuebao/CIESC Journal, 2022, 73 (08): : 3586 - 3596