Mathematical modeling analysis of potential attack detection in topology network based on convolutional neural network

被引:0
|
作者
Li, Jie [1 ]
机构
[1] Yantai Vocat Coll, Elect Audiovisual Teaching & Expt Ctr, Yantai 264670, Shandong, Peoples R China
关键词
Topological network; potential attacks; attack detection; convolutional neural network; feature extraction; risk function;
D O I
10.3233/JCM-226586
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New network attack platforms such as personal to personal botnets pose a great threat to cyberspace, but there is no corresponding detection method to detect them. In order to improve the security of topological networks, this research designs a mathematical modeling analysis method for potential attack detection based on convolutional neural networks. This method determines the potential attack risk assessment function through the feature extraction of vulnerable areas in network topology and the probability model of potential attacks, and then detects potential attacks by means of convolutional neural network data modeling. The experimental results show that the false detection rate and missed detection rate of the three methods for potential attacks are lower than 9% and 8% respectively, but the false detection rate and missed detection rate of the method given in the study are the lowest, and can always be kept below 5%. At the same time, the detection time of potential attacks of this method is shorter than that of the other two detection methods. The detection of potential attacks provides a technical guarantee for the safe operation of the network.
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 50 条
  • [21] Convolutional neural network based early fire detection
    Faisal Saeed
    Anand Paul
    P. Karthigaikumar
    Anand Nayyar
    Multimedia Tools and Applications, 2020, 79 : 9083 - 9099
  • [22] Hybrid Convolutional Neural Network for Robust Attack Detection in Wireless Sensor Networks
    Sharma, Kanta Prasad
    Hussain, Rifat
    Jaharadak, Adam Amril
    Trawnih, Ali Ahmad
    Verma, Deekhsha
    Dasi, Shivakrishna
    Pant, Shivani
    INTERNET TECHNOLOGY LETTERS, 2025,
  • [23] Image Resampling Detection Based on Convolutional Neural Network
    Liang, Yaohua
    Fang, Yanmei
    Luo, Shangjun
    Chen, Bing
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 257 - 261
  • [24] Animal Intrusion Detection Based on Convolutional Neural Network
    Xue, Wenling
    Jiang, Ting
    Shi, Jiong
    2017 17TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2017,
  • [25] Acupoint Detection Based on Deep Convolutional Neural Network
    Sun, Lingyao
    Sun, Shiying
    Fu, Yuanbo
    Zhao, Xiaoguang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7418 - 7422
  • [26] A Weakly Supervised Surface Defect Detection Based on Convolutional Neural Network
    Xu, Liang
    Lv, Shuai
    Deng, Yong
    Li, Xiuxi
    IEEE ACCESS, 2020, 8 : 42285 - 42296
  • [27] Image Deblocking Detection Based on a Convolutional Neural Network
    Liu, Xianjin
    Lu, Wei
    Liu, Wanteng
    Luo, Shangjun
    Liang, Yaohua
    Li, Ming
    IEEE ACCESS, 2019, 7 : 24632 - 24639
  • [28] Fall Detection Based on Convolutional Neural Network and XGBoost
    Zhao Xinchi
    Hu Anming
    He Wei
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (16)
  • [29] Railway Insulator Detection Based on Adaptive Cascaded Convolutional Neural Network
    Wang, Zaixing
    Liu, Xiaozhong
    Peng, Huayi
    Zheng, Lijun
    Gao, Jinhui
    Bao, Yufan
    IEEE ACCESS, 2021, 9 : 115676 - 115686
  • [30] HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion Detection System
    Khan, Muhammad Ashfaq
    PROCESSES, 2021, 9 (05)