PV Panel Model Parameter Estimation by Using Neural Network

被引:5
|
作者
Lo, Wai Lun [1 ]
Chung, Henry Shu Hung [2 ]
Hsung, Richard Tai Chiu [1 ]
Fu, Hong [3 ]
Shen, Tak Wai [1 ]
机构
[1] Hong Kong Chu Hai Coll, Dept Comp Sci, 80 Castle Peak Rd, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China
关键词
model parameters estimation; neural network; photovoltaic panel; maximum power point; POWER POINT TRACKING; ELECTRICAL CHARACTERISTICS; PHOTOVOLTAIC ARRAYS; IMPLEMENTATION; SIMULATION; DESIGN; MODULE;
D O I
10.3390/s23073657
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Photovoltaic (PV) panels have been widely used as one of the solutions for green energy sources. Performance monitoring, fault diagnosis, and Control of Operation at Maximum Power Point (MPP) of PV panels became one of the popular research topics in the past. Model parameters could reflect the health conditions of a PV panel, and model parameter estimation can be applied to PV panel fault diagnosis. In this paper, we will propose a new algorithm for PV panel model parameters estimation by using a Neural Network (ANN) with a Numerical Current Prediction (NCP) layer. Output voltage and current signals (VI) after load perturbation are observed. An ANN is trained to estimate the PV panel model parameters, which is then fined tuned by the NCP to improve the accuracy to about 6%. During the testing stage, VI signals are input into the proposed ANN-NCP system. PV panel model parameters can then be estimated by the proposed algorithms, and the estimated model parameters can be then used for fault detection, health monitoring, and tracking operating points for MPP conditions.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] New criteria to select reasonable hyperparameters for kinetic parameter estimation in distributed activation energy model (DAEM) by using neural network
    Wakimoto, Shinji
    Matsukawa, Yoshiya
    Aoki, Hideyuki
    CHEMICAL ENGINEERING SCIENCE, 2024, 285
  • [22] MADALINE Neural Network for Parameter Estimation of LTI MIMO Systems
    Zhang Wenle
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1346 - 1351
  • [23] Neural-network-based parameter estimation for quantum detection
    Ban, Yue
    Echanobe, Javier
    Ding, Yongcheng
    Puebla, Ricardo
    Casanova, Jorge
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
  • [24] Aerodynamic Parameter Estimation using Two-Stage Radial Basis Function Neural Network
    Singh, Dhan Jeet
    Vermal, Nischal K.
    Ghosh, A. K.
    Sanwale, Jitu
    Malagaudanavar, Appasaheb
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 461 - 467
  • [25] PV panel modeling with improved parameter extraction technique
    Rasool, Fahad
    Drieberg, Micheal
    Badruddin, Nasreen
    Singh, Balbir Mahinder Singh
    SOLAR ENERGY, 2017, 153 : 519 - 530
  • [26] Dynamic Parameter Identification for Reconfigurable Robot Using Adaline Neural Network
    Ge, Weimin
    Wang, Bingda
    Mu, Haozhi
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 319 - 324
  • [27] Estimation of solar radiation on PV panel surface with optimum tilt angle using vortex search algorithm
    Ramli, Makbul A. M.
    Bouchekara, Houssem R. E. H.
    IET RENEWABLE POWER GENERATION, 2018, 12 (10) : 1138 - 1145
  • [28] Vehicle Lateral Dynamics-Inspired Hybrid Model Using Neural Network for Parameter Identification and Error Characterization
    Zhou, Zhisong
    Wang, Yafei
    Zhou, Guofeng
    Liu, Xulei
    Wu, Mingyu
    Dai, Kunpeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 16173 - 16186
  • [29] Parameter Estimation of the Bishop Photovoltaic Model Using a Genetic Algorithm
    Johana Restrepo-Cuestas, Bonie
    Montano, Jhon
    Andres Ramos-Paja, Carlos
    Adriana Trejos-Grisales, Luz
    Lucia Orozco-Gutierrez, Martha
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [30] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241