On the dependent recognition of some long zinc finger proteins

被引:9
作者
Zuo, Zheng [1 ,2 ]
Billings, Timothy [6 ]
Walker, Michael [6 ]
Petkov, Petko M. [6 ]
Fordyce, Polly M. [1 ,3 ,4 ,5 ]
Stormo, Gary D. [2 ]
机构
[1] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[2] Washington Univ St Louis, Dept Genet, St Louis, MO 63130 USA
[3] Chan Zuckerberg Biohub, San Francisco, CA USA
[4] Stanford Univ, Dept Bioengn, Stanford, CA USA
[5] Stanford Univ, Stanford ChEM H Inst, Stanford, CA USA
[6] Jackson Lab, Bar Harbor, ME USA
关键词
TRANSCRIPTION FACTOR IIIA; CRYSTAL-STRUCTURE; DNA RECOGNITION; BINDING-SITES; CTCF; METHYLATION; EVOLUTION; COMPLEX; GENES; MOTIF;
D O I
10.1093/nar/gkad207
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human genome contains about 800 C2H2 zinc finger proteins (ZFPs), and most of them are composed of long arrays of zinc fingers. Standard ZFP recognition model asserts longer finger arrays should recognize longer DNA-binding sites. However, recent experimental efforts to identify in vivo ZFP binding sites contradict this assumption, with many exhibiting short motifs. Here we use ZFY, CTCF, ZIM3, and ZNF343 as examples to address three closely related questions: What are the reasons that impede current motif discovery methods? What are the functions of those seemingly unused fingers and how can we improve the motif discovery algorithms based on long ZFPs' biophysical properties? Using ZFY, we employed a variety of methods and find evidence for 'dependent recognition' where downstream fingers can recognize some previously undiscovered motifs only in the presence of an intact core site. For CTCF, high-throughput measurements revealed its upstream specificity profile depends on the strength of its core. Moreover, the binding strength of the upstream site modulates CTCF's sensitivity to different epigenetic modifications within the core, providing new insight into how the previously identified intellectual disability-causing and cancer-related mutant R567W disrupts upstream recognition and deregulates the epigenetic control by CTCF. Our results establish that, because of irregular motif structures, variable spacing and dependent recognition between sub-motifs, the specificities of long ZFPs are significantly underestimated, so we developed an algorithm, ModeMap, to infer the motifs and recognition models of ZIM3 and ZNF343, which facilitates high-confidence identification of specific binding sites, including repeats-derived elements. With revised concept, technique, and algorithm, we can discover the overlooked specificities and functions of those 'extra' fingers, and therefore decipher their broader roles in human biology and diseases.
引用
收藏
页码:5364 / 5376
页数:13
相关论文
共 41 条
[11]   De Novo Mutations in the Genome Organizer CTCF Cause Intellectual Disability [J].
Gregor, Anne ;
Oti, Martin ;
Kouwenhoven, Evelyn N. ;
Hoyer, Juliane ;
Sticht, Heinrich ;
Ekici, Arif B. ;
Kjaergaard, Susanne ;
Rauch, Anita ;
Stunnenberg, Hendrik G. ;
Uebe, Steffen ;
Vasileiou, Georgia ;
Reis, Andre ;
Zhou, Huiqing ;
Zweier, Christiane .
AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (01) :124-131
[12]   Lineage-specific expansion of KRAB zinc-finger transcription factor genes: Implications for the evolution of vertebrate regulatory networks [J].
Hamilton, AT ;
Huntley, S ;
Kim, J ;
Branscomb, E ;
Stubbs, L .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2003, 68 :131-140
[13]   CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus [J].
Hark, AT ;
Schoenherr, CJ ;
Katz, DJ ;
Ingram, RS ;
Levorse, JM ;
Tilghman, SM .
NATURE, 2000, 405 (6785) :486-489
[14]   Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA [J].
Hashimoto, Hideharu ;
Wang, Dongxue ;
Horton, John R. ;
Zhang, Xing ;
Corces, Victor G. ;
Cheng, Xiaodong .
MOLECULAR CELL, 2017, 66 (05) :711-+
[15]   A comprehensive catalog of human KRAB-associated zinc finger genes: Insights into the evolutionary history of a large family of transcriptional repressors [J].
Huntley, S ;
Baggott, DM ;
Hamilton, AT ;
Tran-Gyamfi, M ;
Yang, S ;
Kim, J ;
Gordon, L ;
Branscomb, E ;
Stubbs, L .
GENOME RESEARCH, 2006, 16 (05) :669-677
[16]   KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks [J].
Imbeault, Michael ;
Helleboid, Pierre-Yves ;
Trono, Didier .
NATURE, 2017, 543 (7646) :550-+
[17]   Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities [J].
Jolma, Arttu ;
Kivioja, Teemu ;
Toivonen, Jarkko ;
Cheng, Lu ;
Wei, Gonghong ;
Enge, Martin ;
Taipale, Mikko ;
Vaquerizas, Juan M. ;
Yan, Jian ;
Sillanpaa, Mikko J. ;
Bonke, Martin ;
Palin, Kimmo ;
Talukder, Shaheynoor ;
Hughes, Timothy R. ;
Luscombe, Nicholas M. ;
Ukkonen, Esko ;
Taipale, Jussi .
GENOME RESEARCH, 2010, 20 (06) :861-873
[18]   Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data [J].
Jothi, Raja ;
Cuddapah, Suresh ;
Barski, Artem ;
Cui, Kairong ;
Zhao, Keji .
NUCLEIC ACIDS RESEARCH, 2008, 36 (16) :5221-5231
[19]   CTCF Haploinsufficiency Destabilizes DNA Methylation and Predisposes to Cancer [J].
Kemp, Christopher J. ;
Moore, James M. ;
Moser, Russell ;
Bernard, Brady ;
Teater, Matt ;
Smith, Leslie E. ;
Rabaia, Natalia A. ;
Gurley, Kay E. ;
Guinney, Justin ;
Busch, Stephanie E. ;
Shaknovich, Rita ;
Lobanenkov, Victor V. ;
Liggitt, Denny ;
Shmulevich, Ilya ;
Melnick, Ari ;
Filippova, Galina N. .
CELL REPORTS, 2014, 7 (04) :1020-1029
[20]   Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome [J].
Kim, Tae Hoon ;
Abdullaev, Ziedulla K. ;
Smith, Andrew D. ;
Ching, Keith A. ;
Loukinov, Dmitri I. ;
Green, Roland D. ;
Zhang, Michael Q. ;
Lobanenkov, Victor V. ;
Ren, Bing .
CELL, 2007, 128 (06) :1231-1245