Survey of deep learning techniques for disease prediction based on omics data

被引:8
作者
Yu, Xindi [1 ]
Zhou, Shusen [1 ]
Zou, Hailin [1 ]
Wang, Qingjun [1 ]
Liu, Chanjuan [1 ]
Zang, Mujun [1 ]
Liu, Tong [1 ]
Aslan, Gulcin Itirli [1 ]
机构
[1] Ludong Univ, Sch Informat & Elect Engn, Yantai 264025, Peoples R China
来源
HUMAN GENE | 2023年 / 35卷
基金
中国国家自然科学基金;
关键词
Deep learning; Disease prediction; DNA; RNA; Protein; Multi-omics; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; ASSOCIATION; FRAMEWORK; SYSTEM; MODEL; VERSION; SITES; LOCI; RNA;
D O I
10.1016/j.humgen.2022.201140
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In the era of big data, computer science has been applied to every aspect of biomedical field. At the same time, transforming biomedical data into valuable knowledge is one of the most important challenges of bioinformatics. Consequently, the birth of deep learning algorithms has greatly promoted the development of bioinformatics as a result of its ability to incorporate existing knowledge from vast datasets. In this review, we focus on the related deep learning techniques based on omics in the direction of disease prediction and present brief descriptions and comments of these studies based on DNA, RNA, protein and multi-omics datasets. Finally, we give the statistical results of the types and numbers of papers published in the field of disease prediction and discuss the potential development of deep learning in this field.
引用
收藏
页数:13
相关论文
共 214 条
[1]  
Adhikari Nimai Chand Das, 2018, International Journal of Computer Science & Information Technology, V10, P49, DOI 10.5121/ijcsit.2018.10405
[2]   Cervical Cancer Diagnosis Using Very Deep Networks Over Different Activation Functions [J].
Adweb, Khaled Mabrouk Amer ;
Cavus, Nadire ;
Sekeroglu, Boran .
IEEE ACCESS, 2021, 9 :46612-46625
[3]   A Hybrid CNN-Based Segmentation and Boosting Classifier for Real Time Sensor Spinal Cord Injury Data [J].
Ahammad, Sk. Hasane ;
Rajesh, V. ;
Rahman, Md. Zia Ur ;
Lay-Ekuakille, Aime .
IEEE SENSORS JOURNAL, 2020, 20 (17) :10092-10101
[4]   DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information [J].
Ahmed, Saeed ;
Kabir, Muhammad ;
Arif, Muhammad ;
Khan, Zaheer Ullah ;
Yu, Dong-Jun .
ANALYTICAL BIOCHEMISTRY, 2021, 612
[5]   Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms [J].
Akselrod-Ballin, Ayelet ;
Chorev, Michal ;
Shoshan, Yoel ;
Spiro, Adam ;
Hazan, Alon ;
Melamed, Roie ;
Barkan, Ella ;
Herzel, Esma ;
Naor, Shaked ;
Karavani, Ehud ;
Koren, Gideon ;
Goldscbmidt, Yaara ;
Shalev, Varda ;
Rosen-Zvi, Michal ;
Guindy, Michal .
RADIOLOGY, 2019, 292 (02) :331-342
[6]   Hybrid model for efficient prediction of poly(A) signals in human genomic DNA [J].
Albalawi, Fahad ;
Chahid, Abderrazak ;
Guo, Xingang ;
Albaradei, Somayah ;
Magana-Mora, Arturo ;
Jankovic, Boris R. ;
Uludag, Mahmut ;
Van Neste, Christophe ;
Essack, Magbubah ;
Laleg-Kirati, Taous-Meriem ;
Bajic, Vladimir B. .
METHODS, 2019, 166 :31-39
[7]   A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion [J].
Ali, Farman ;
El-Sappagh, Shaker ;
Islam, S. M. Riazul ;
Kwak, Daehan ;
Ali, Amjad ;
Imran, Muhammad ;
Kwak, Kyung-Sup .
INFORMATION FUSION, 2020, 63 :208-222
[8]   Automatic cardiac cine MRI segmentation and heart disease classification [J].
Ammar, Abderazzak ;
Bouattane, Omar ;
Youssfi, Mohamed .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
[9]   A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study [J].
Amodeo, Ilaria ;
De Nunzio, Giorgio ;
Raffaeli, Genny ;
Borzani, Irene ;
Griggio, Alice ;
Conte, Luana ;
Macchini, Francesco ;
Condo, Valentina ;
Persico, Nicola ;
Fabietti, Isabella ;
Ghirardello, Stefano ;
Pierro, Maria ;
Tafuri, Benedetta ;
Como, Giuseppe ;
Cascio, Donato ;
Colnaghi, Mariarosa ;
Mosca, Fabio ;
Cavallaro, Giacomo .
PLOS ONE, 2021, 16 (11)
[10]   An improved version of the DNA methylation database (MethDB) [J].
Amoreira, C ;
Hindermann, W ;
Grunau, C .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :75-77