Understanding the doping effect in CsPbI2Br solar cells: crystallization kinetics, defect passivation and energy level alignment

被引:15
作者
Wang, Haoyu [1 ]
Wang, Ze [1 ]
Tang, Xinyu [1 ]
Liu, Li [1 ]
Zhang, Haolin [1 ]
Yao, Xianghua [1 ]
Wang, Furong [1 ]
Wu, Shuanghong [1 ]
Liu, Xiaodong [1 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Optoelect Sci & Engn, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Inorganic perovskite solar cells; Crystallization kinetics; Iodide-rich perovskite intermediate phase; Fermi level; Passivation; TRANSPORTING LAYER; HIGH-PERFORMANCE; EFFICIENT; DEGRADATION;
D O I
10.1016/j.cej.2022.139952
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Additive engineering is an efficient approach to improve the photovoltaic performance of all-inorganic CsPbI2Br perovskite. However, rare attention has been paid to the CsBr intermediate, which has a significant effect on the perovskite crystallization process and thus the quality of final perovskite films. Herein, we find that the inter-mediate CsBr is formed during spin-coating of the CsPbI2Br precursor solution, which leads to the generation of iodide-rich perovskite (CsPbI2+xBr1-x) phases in the precursor film. This finally results in low-quality perovskite film after thermal annealing. To suppress the CsBr formation, lithium acetate (LiAc) was added into the CsPbI2Br precursor solution. We find that the intermediate CsBr is significantly suppressed after doping of LiAc, which results in less phase segregations in the precursor film and thus high-quality CsPbI2Br film after thermal annealing. The LiAc-doped perovskite film shows higher crystallinity, larger grain size and more preferential orientation than the pristine perovskite film. Furthermore, Ac? coordinates with Pb2+ to passivate uncoordinated Pb2+ defects, and Li+ aggregates at the perovskite surface to upwardly shift the Fermi level of CsPbI2Br closer to the conduction band edge, which leads to the suppressed trap-assisted recombination losses and the enhanced interfacial charge extraction in the LiAc-doped perovskite solar cells (PSCs). As a result, a remarkable power conversion efficiency (PCE) of 16.05% is achieved in LiAc-doped CsPbI2Br PSCs. Moreover, the devices exhibit superior thermal stability with almost no PCE degradation after 300 h of thermal aging at 85 degrees C. Our results provide deep insights into the doping effect of additive, especially on perovskite crystallization kinetics, which are important for the future optimization of high-performance all-inorganic PSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Surface modification of CsPbI2Br for improved performance of inorganic perovskite solar cells
    Fatima, Kalsoom
    Haider, Muhammad Irfan
    Bashir, Amna
    Qamar, Samina
    Qureshi, Akbar Ali
    Akhter, Zareen
    Sultan, Muhammad
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 142
  • [22] Scalable Ambient Fabrication of High-Performance CsPbI2Br Solar Cells
    Fan, Yuanyuan
    Fang, Junjie
    Chang, Xiaoming
    Tang, Ming-Chun
    Barrit, Dounya
    Xu, Zhuo
    Jiang, Zhiwu
    Wen, Jialun
    Zhao, Huan
    Niu, Tianqi
    Smilgies, Detlef-M
    Jin, Shengye
    Liu, Zhike
    Li, Er Qiang
    Amassian, Aram
    Liu, Shengzhong
    Zhao, Kui
    JOULE, 2019, 3 (10) : 2485 - 2502
  • [23] Surface modification with ionic liquid for efficient CsPbI2Br perovskite solar cells
    Pu, Xingyu
    Han, Jian
    Wang, Shuangjie
    Zhou, Hui
    Cao, Qi
    Yang, Jiabao
    He, Ziwei
    Li, Xuanhua
    JOURNAL OF MATERIOMICS, 2021, 7 (05) : 1039 - 1048
  • [24] Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%
    Han, Yu
    Zhao, Huan
    Duan, Chenyang
    Yang, Shaomin
    Yang, Zhou
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (12)
  • [25] Effect of doping on the phase stability and photophysical properties of CsPbI2Br perovskite thin films
    Atourki, Lahoucine
    Bernabe, Mari
    Makha, Mohammed
    Bouabid, Khalid
    Regragui, Mohammed
    Ihlal, Ahmed
    Abd-lefdil, Mohammed
    Mollar, Miguel
    RSC ADVANCES, 2021, 11 (03) : 1440 - 1449
  • [26] Synergistic passivation and energy level alignment by graphene quantum dots for high performance inverted CsPbI3 perovskite solar cells
    Xiao, Cong
    Liu, Zhongyu
    Liu, Jiayin
    Xing, Haoming
    Wang, Jianwei
    Zhang, Jing
    Huang, Like
    Hu, Ziyang
    Zhu, Yuejin
    Chen, Da
    Liu, Xiaohui
    APPLIED PHYSICS LETTERS, 2024, 125 (06)
  • [27] All-Inorganic CsPbI2Br Perovskite Solar Cells: Recent Developments and Challenges
    Ullah, Saad
    Wang, Jiaming
    Yang, Peixin
    Liu, Linlin
    Li, Yuqiao
    Yang, Shi-E.
    Xia, Tianyu
    Guo, Haizhong
    Chen, Yongsheng
    ENERGY TECHNOLOGY, 2021, 9 (12)
  • [28] Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability
    Tian, Jingjing
    Xue, Qifan
    Tang, Xiaofeng
    Chen, Yuxuan
    Li, Ning
    Hu, Zhicheng
    Shi, Tingting
    Wang, Xin
    Huang, Fei
    Brabec, Christoph J.
    Yip, Hin-Lap
    Cao, Yong
    ADVANCED MATERIALS, 2019, 31 (23)
  • [29] Lanthanide Stabilized All-Inorganic CsPbI2Br Perovskite Solar Cells with Superior Thermal Resistance
    Chen, Libao
    Wu, Wen
    Wang, Jinpei
    Qian, Zongyao
    Liu, Ruigang
    Niu, Yangyang
    Chen, Yonghua
    Xie, Xiaoji
    Zhang, Hui
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (04) : 3937 - 3944
  • [30] Low Temperature Fabrication for High Performance Flexible CsPbI2Br Perovskite Solar Cells
    Jiang, Hong
    Feng, Jiangshan
    Zhao, Huan
    Li, Guijun
    Yin, Guannan
    Han, Yu
    Yan, Feng
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED SCIENCE, 2018, 5 (11)