A Time-Adaptive Space-Time FMM for the Heat Equation

被引:0
|
作者
Watschinger, Raphael [1 ]
Of, Guenther [1 ]
机构
[1] Graz Univ Technol, Inst Appl Math, Graz, Austria
基金
奥地利科学基金会;
关键词
Boundary Element Method; Space-Time Method; Heat Equation; FMM; Adaptivity; BOUNDARY-ELEMENT METHOD; MULTIPOLE ALGORITHM;
D O I
10.1515/cmam-2022-0117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new time-adaptive FMM for a space-time boundary element method for the heat equation. The method extends the existing parabolic FMM by adding new operations that allow for an efficient treatment of tensor product meshes which are adaptive in time. We analyze the efficiency of the new operations and the approximation quality of the related kernel expansions and present numerical experiments that reveal the benefits of the new method.
引用
收藏
页码:445 / 471
页数:27
相关论文
共 50 条
  • [1] Adaptive space-time BEM for the heat equation
    Gantner, Gregor
    van Venetië, Raymond
    Computers and Mathematics with Applications, 2022, 107 : 117 - 131
  • [2] Adaptive space-time BEM for the heat equation
    Gantner, Gregor
    van Venetie, Raymond
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 107 : 117 - 131
  • [3] Space-time discretization of the heat equation
    Andreev, Roman
    NUMERICAL ALGORITHMS, 2014, 67 (04) : 713 - 731
  • [4] SPACE-TIME ESTIMATE TO HEAT EQUATION
    Wang Yidong
    Jiang Lingyu
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 20 (03): : 247 - 251
  • [5] Space-time discretization of the heat equation
    Roman Andreev
    Numerical Algorithms, 2014, 67 : 713 - 731
  • [6] On Space-Time Quasiconcave Solutions of the Heat Equation
    Chen, Chuanqiang
    Ma, Xinan
    Salani, Paolo
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 259 (1244) : 1 - +
  • [7] A space-time DPG method for the heat equation
    Diening, Lars
    Storn, Johannes
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 105 : 41 - 53
  • [8] SPACE-TIME VIRTUAL ELEMENTS FOR THE HEAT EQUATION
    Gomez, Sergio
    Mascotto, Lorenzo
    Moiola, Andrea
    Perugia, Ilaria
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (01) : 199 - 228
  • [9] Strong Space-Time Convexity and the Heat Equation
    Chau, Albert
    Weinkove, Ben
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (04)
  • [10] Asymptotic properties of the space-time adaptive numerical solution of a nonlinear heat equation
    Budd, Chris
    Koch, Othmar
    Taghizadeh, Leila
    Weinmueller, Ewa
    CALCOLO, 2018, 55 (04)