Null controllability and numerical simulations for a class of degenerate parabolic equations with nonlocal nonlinearities

被引:4
作者
de Carvalho, P. P. [1 ]
Demarque, R. [2 ]
Limaco, J. [3 ]
Viana, L. [4 ]
机构
[1] Univ Estadual Piaui, Coordenacao Matemat, BR-64002150 Teresina, PI, Brazil
[2] Univ Fed Fluminense, Dept Ciencias Nat, BR-28895532 Rio Das Ostras, RJ, Brazil
[3] Univ Fed Fluminense, Dept Matemat Aplicada, BR-24210201 Niteroi, RJ, Brazil
[4] Univ Fed Fluminense, Dept Analise, BR-24210201 Niteroi, RJ, Brazil
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 03期
关键词
Degenerate parabolic systems; Controllability; Nonlocal nonlinearty; Carleman inequalities; Finite element; Quasi-Newton methods; DIFFUSION; VIBRATIONS; OPERATORS; TERMS; MODEL;
D O I
10.1007/s00030-022-00831-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we prove a Carleman estimate, which allows us to obtain the local null-controllability for a class of strongly degenerate parabolic equations with nonlocal terms, naturally extending the main result of Demarque R et al. (Nonlin Anal: Real World Appl 43:523-547, 2018). We present a theoretical approach, applying Lyusternik's Inverse Function Theorem, as well as, some numerical experiments. We use Freefem++ (version 4.9) for the data computations. Motivated by Le Balc'H K (J de Mathematiques Pures et Appliquees 135:103-139, 2020), we prove a Poincare inequality type, applying it to conclude that our local null-controllability theorem implies a large global null-controllability one.
引用
收藏
页数:45
相关论文
共 42 条
[1]   Carleman estimates for degenerate parabolic operators with applications to null controllability [J].
Alabau-Boussouira, F. ;
Cannarsa, P. ;
Fragnelli, G. .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :161-204
[2]  
Alekseev V.M., 1987, Optimal Control, DOI [10.1007/978-1-4615-7551-1, DOI 10.1007/978-1-4615-7551-1]
[3]  
Allal B, 2021, Arxiv, DOI arXiv:2103.14058
[4]  
[Anonymous], 1996, Controllability of Evolution Equations
[5]   Stackelberg-Nash null controllability for some linear and semilinear degenerate parabolic equations [J].
Araruna, F. D. ;
Araujo, B. S. V. ;
Fernandez-Cara, E. .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (03)
[6]  
Argyros I. K., 2008, CONVERGENCE APPL NEW
[7]   Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions [J].
Boutaayamou, Idriss ;
Fragnelli, Genni ;
Maniar, Lahcen .
JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (01) :1-35
[8]   Degenerate self-adjoint evolution equations on the unit interval [J].
Campiti, M ;
Metafune, G ;
Pallara, D .
SEMIGROUP FORUM, 1998, 57 (01) :1-36
[9]   Carleman estimates for a class of degenerate parabolic operators [J].
Cannarsa, P. ;
Martinez, P. ;
Vancostenoble, J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) :1-19
[10]  
Cannarsa P, 2005, ADV DIFFERENTIAL EQU, V10, P153