Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers

被引:6
作者
Smiga-Matuszowicz, Monika [1 ]
Wlodarczyk, Jakub [2 ]
Skorupa, Malgorzata [1 ,3 ]
Czerwinska-Glowka, Dominika [1 ]
Folta, Kaja [1 ]
Pastusiak, Malgorzata [2 ]
Adamiec-Organisciok, Malgorzata [4 ,5 ]
Skonieczna, Magdalena [4 ,5 ]
Turczyn, Roman [1 ,6 ]
Sobota, Michal [2 ]
Krukiewicz, Katarzyna [1 ,6 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, M Strzody 9, PL-44100 Gliwice, Poland
[2] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowska St 34, PL-41819 Zabrze, Poland
[3] Silesian Tech Univ, Joint Doctoral Sch, Akad 2A, PL-44100 Gliwice, Poland
[4] Silesian Tech Univ, Biotechnol Ctr, B Krzywoustego 8, PL-44100 Gliwice, Poland
[5] Silesian Tech Univ, Fac Automat Control Elect & Comp Sci, Dept Syst Biol & Engn, Akad 16, PL-44100 Gliwice, Poland
[6] Silesian Tech Univ, Ctr Organ & Nanohybrid Elect, S Konarskiego 22B, PL-44100 Gliwice, Poland
关键词
blood vessel regeneration; electrospun scaffolds; PLGA; poly(isosorbide sebacate); DIAMETER BLOOD-VESSELS; DRUG-DELIVERY; ISOSORBIDE; BIOMATERIALS; DEGRADATION; FABRICATION;
D O I
10.3390/ijms24021190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 mu m and 4.75 mu m. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Poly (D,L-lactide-co-glycolide) nanoparticles: Uptake by epithelial cells and cytotoxicity
    Nkabinde, L. A.
    Shoba-Zikhali, L. N. N.
    Semete-Makokotlela, B.
    Kalombo, L.
    Swai, H.
    Grobler, A.
    Hamman, J. H.
    EXPRESS POLYMER LETTERS, 2014, 8 (03): : 197 - 206
  • [42] In vitro degradation of porous poly(L-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions
    Yang, Yanfang
    Zhao, Yunhui
    Tang, Gongwen
    Li, Hua
    Yuan, Xiaoyan
    Fan, Yubo
    POLYMER DEGRADATION AND STABILITY, 2008, 93 (10) : 1838 - 1845
  • [43] Fabrication of Poly(D,L-lactide-co-glycolide) Microspheres and Degradation Characteristics in vitro
    He, Zeqiang
    Xiong, Lizhi
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2011, 50 (09): : 1682 - 1690
  • [44] Poly (D, L-lactide-co-glycolide)-phospholipid nanocarrier for efficient delivery of carotenoids
    Vllikannan, Baskaran
    Ranganathan, Arunkumar
    Manabe, Yuki
    Sugwara, Tatsuya
    Hirata, Takashi
    Hindupur, Ravi
    Toragall, Veeresh
    ANNALS OF NUTRITION AND METABOLISM, 2023, 79 : 235 - 235
  • [45] Preparation of double layered nanosphere using dextran and poly(L-lactide-co-glycolide)
    Hong, KD
    Ahn, YS
    Go, JT
    Kim, MS
    Yuk, SH
    Shin, HS
    Rhee, JM
    Khang, G
    Lee, HB
    POLYMER-KOREA, 2005, 29 (03) : 260 - 265
  • [46] Multifunctional bioactive glass scaffolds coated with layers of poly(D,L-lactide-co-glycolide) and poly(n-isopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin
    Olalde, B.
    Garmendia, N.
    Saez-Martinez, V.
    Argarate, N.
    Nooeaid, P.
    Morin, F.
    Boccaccini, A. R.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (07): : 3760 - 3767
  • [47] Compressive Strength of Poly(L-lactide-co-glycolide) Scaffolds Seeded Nucleus Pulposus Cells Depending on Pore Size
    Hong, Hee Kyung
    Kim, Soon Hee
    Lee, Seon Kyoung
    Lee, Young Hyun
    Kim, Soo Jin
    Kim, On You
    Lee, Dongwon
    Rhee, John M.
    Son, Youngsook
    Khang, Gilson
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2009, 6 (4-11) : 1029 - 1034
  • [48] Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth
    Zhou, Wei
    Feng, Yakai
    Yang, Jing
    Fan, Jiaxu
    Lv, Juan
    Zhang, Li
    Guo, Jintang
    Ren, Xiangkui
    Zhang, Wencheng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2015, 26 (01)
  • [49] Photochemical internalization for pDNA transfection: Evaluation of poly(D,L-lactide-co-glycolide) and poly(ethylenimine) nanoparticles
    Gargouri, M.
    Sapin, A.
    Arica-Yegin, B.
    Merlin, J. L.
    Becuwe, P.
    Maincent, P.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 403 (1-2) : 276 - 284
  • [50] Poly(d,l-Lactide-Co-Glycolide) Encapsulated Poly(Vinyl Alcohol) Hydrogel as a Drug Delivery System
    Tarun K. Mandal
    Levon A. Bostanian
    Richard A. Graves
    Sharlene R. Chapman
    Pharmaceutical Research, 2002, 19 : 1713 - 1719