Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers

被引:6
|
作者
Smiga-Matuszowicz, Monika [1 ]
Wlodarczyk, Jakub [2 ]
Skorupa, Malgorzata [1 ,3 ]
Czerwinska-Glowka, Dominika [1 ]
Folta, Kaja [1 ]
Pastusiak, Malgorzata [2 ]
Adamiec-Organisciok, Malgorzata [4 ,5 ]
Skonieczna, Magdalena [4 ,5 ]
Turczyn, Roman [1 ,6 ]
Sobota, Michal [2 ]
Krukiewicz, Katarzyna [1 ,6 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, M Strzody 9, PL-44100 Gliwice, Poland
[2] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowska St 34, PL-41819 Zabrze, Poland
[3] Silesian Tech Univ, Joint Doctoral Sch, Akad 2A, PL-44100 Gliwice, Poland
[4] Silesian Tech Univ, Biotechnol Ctr, B Krzywoustego 8, PL-44100 Gliwice, Poland
[5] Silesian Tech Univ, Fac Automat Control Elect & Comp Sci, Dept Syst Biol & Engn, Akad 16, PL-44100 Gliwice, Poland
[6] Silesian Tech Univ, Ctr Organ & Nanohybrid Elect, S Konarskiego 22B, PL-44100 Gliwice, Poland
关键词
blood vessel regeneration; electrospun scaffolds; PLGA; poly(isosorbide sebacate); DIAMETER BLOOD-VESSELS; DRUG-DELIVERY; ISOSORBIDE; BIOMATERIALS; DEGRADATION; FABRICATION;
D O I
10.3390/ijms24021190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 mu m and 4.75 mu m. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol
    Ignjatovic, Nenad
    Uskokovic, Vuk
    Ajdukovic, Zorica
    Uskokovic, Dragan
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (02): : 943 - 950
  • [22] Imparting Superhydrophobicity to Biodegradable Poly(lactide-co-glycolide) Electrospun Meshes
    Kaplan, Jonah A.
    Lei, Hongyi
    Liu, Rong
    Padera, Robert
    Colson, Yolonda L.
    Grinstaff, Mark W.
    BIOMACROMOLECULES, 2014, 15 (07) : 2548 - 2554
  • [23] Synthesis and Thermal and Chemical Characterization of the Poly(D,L-lactide-co-glycolide) Copolymer
    Erbetta, Cynthia D. C.
    Viegas, Carla C. B.
    Freitas, Roberto F. S.
    Sousa, Ricardo G.
    POLIMEROS-CIENCIA E TECNOLOGIA, 2011, 21 (05): : 376 - 382
  • [24] Thermosensitive poly-(D,L-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(D, L-lactide-co-glycolide) hydrogels for multi-drug delivery
    Cho, Hyunah
    Kwon, Glen S.
    JOURNAL OF DRUG TARGETING, 2014, 22 (07) : 669 - 677
  • [25] Design of experiments for the development of poly(D,L-lactide-co-glycolide) nanoparticles loaded with Uncaria tomentosa
    Ribeiro, Ana Ferreira
    Garruth Ferreira, Carina Torres
    dos Santos, Juliana Fernandes
    Cabral, Lucio Mendes
    de Sousa, Valeria Pereira
    JOURNAL OF NANOPARTICLE RESEARCH, 2015, 17 (02)
  • [26] In vitro hemocompatibility studies of (poly(L-lactide) and poly(L-lactide-co-glycolide) as materials for bioresorbable stents manufacture
    Szymonowicz, Maria
    Rybak, Zbigniew
    Witkiewicz, Wojciech
    Pezowicz, Celina
    Filipiak, Jaroslaw
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2014, 16 (04) : 131 - 139
  • [27] Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds
    Sander, EA
    Alb, AM
    Nauman, EA
    Reed, WF
    Dee, KC
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2004, 70A (03) : 506 - 513
  • [28] Biocompatibility of poly(D,L-lactide-co-glycolide) nanoparticles conjugated with alendronate
    Cenni, Elisabetta
    Granchi, Donatella
    Avnet, Sofia
    Fotia, Caterina
    Salerno, Manuela
    Micieli, Dorotea
    Sarpietro, Maria G.
    Pignatello, Rosario
    Castelli, Francesco
    Baldini, Nicola
    BIOMATERIALS, 2008, 29 (10) : 1400 - 1411
  • [29] Levofloxacin loaded poly (ethylene oxide)-chitosan/quercetin loaded poly (D,L-lactide-co-glycolide) core-shell electrospun nanofibers for burn wound healing
    Monavari, Mahshid
    Sohrabi, Razieh
    Motasadizadeh, Hamidreza
    Monavari, Mehran
    Fatahi, Yousef
    Ejarestaghi, Negin Mousavi
    Fuentes-Chandia, Miguel
    Leal-Egana, Aldo
    Akrami, Mohammad
    Homaeigohar, Shahin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [30] Polymeric nanomedicines based on poly(lactide) and poly(lactide-co-glycolide)
    Tong, Rong
    Gabrielson, Nathan P.
    Fan, Timothy M.
    Cheng, Jianjun
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (06): : 323 - 332