Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers

被引:6
|
作者
Smiga-Matuszowicz, Monika [1 ]
Wlodarczyk, Jakub [2 ]
Skorupa, Malgorzata [1 ,3 ]
Czerwinska-Glowka, Dominika [1 ]
Folta, Kaja [1 ]
Pastusiak, Malgorzata [2 ]
Adamiec-Organisciok, Malgorzata [4 ,5 ]
Skonieczna, Magdalena [4 ,5 ]
Turczyn, Roman [1 ,6 ]
Sobota, Michal [2 ]
Krukiewicz, Katarzyna [1 ,6 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, M Strzody 9, PL-44100 Gliwice, Poland
[2] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowska St 34, PL-41819 Zabrze, Poland
[3] Silesian Tech Univ, Joint Doctoral Sch, Akad 2A, PL-44100 Gliwice, Poland
[4] Silesian Tech Univ, Biotechnol Ctr, B Krzywoustego 8, PL-44100 Gliwice, Poland
[5] Silesian Tech Univ, Fac Automat Control Elect & Comp Sci, Dept Syst Biol & Engn, Akad 16, PL-44100 Gliwice, Poland
[6] Silesian Tech Univ, Ctr Organ & Nanohybrid Elect, S Konarskiego 22B, PL-44100 Gliwice, Poland
关键词
blood vessel regeneration; electrospun scaffolds; PLGA; poly(isosorbide sebacate); DIAMETER BLOOD-VESSELS; DRUG-DELIVERY; ISOSORBIDE; BIOMATERIALS; DEGRADATION; FABRICATION;
D O I
10.3390/ijms24021190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 mu m and 4.75 mu m. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(D,L-lactide-co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration
    Pecorini, Gianni
    Braccini, Simona
    Parrini, Gianluca
    Chiellini, Federica
    Puppi, Dario
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)
  • [12] Evaluation of the in vitro cytotoxicity and modulation of the inflammatory response by the bioresorbable polymers poly(D,L-lactide-co-glycolide) and poly(L-lactide-co-glycolide)
    Geddes, Lucy
    Themistou, Efrosyni
    Burrows, James F.
    Buchanan, Fraser J.
    Carson, Louise
    ACTA BIOMATERIALIA, 2021, 134 (134) : 261 - 275
  • [13] A novel hemostatic delivery device for thrombin: Biodegradable poly(D,L-lactide-co-glycolide) 50:50 microspheres
    Smeets, Ralf
    Gerhards, Frank
    Stein, Jamal
    Paz, Rui Miguel Pereira
    Vogt, Stephan
    Pautke, Christoph
    Weitz, Jochen
    Kolk, Andreas
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2011, 96A (01) : 177 - 185
  • [14] Structure and cytotoxicity of biodegradable poly(D,l-lactide-co-glycolide) nanoparticles loaded with oxaliplatin
    Razuvaeva, Ekaterina, V
    Kalinin, Kirill T.
    Sedush, Nikita G.
    Nazarov, Alexey A.
    Volkov, Dmitry S.
    Chvalun, Sergei N.
    MENDELEEV COMMUNICATIONS, 2021, 31 (04) : 512 - 514
  • [15] Size control of poly(D,L-lactide-co-glycolide) and poly(D,L-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique
    Astete, Carlos E.
    Kumar, Challa S. S. R.
    Sabliov, Cristina M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2007, 299 (1-3) : 209 - 216
  • [16] Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold
    Li, Ping
    Feng, Xiaoliang
    Jia, Xiaoling
    Fan, Yubo
    ACTA BIOMATERIALIA, 2010, 6 (08) : 2991 - 2996
  • [17] Silver nanoparticle incorporated poly(L-lactide-co-glycolide) nanofibers: Evaluation of their biocompatibility and antibacterial properties
    Gora, Aleksander
    Prabhakaran, Molamma P.
    Eunice, Goh Tze Leng
    Lakshminarayanan, Rajamani
    Ramakrishna, Seeram
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (42)
  • [18] Benzocaine loaded biodegradable poly-(D,L-lactide-co-glycolide) nanocapsules: factorial design and characterization
    Moraes, Carolina Morales
    de Matos, Angelica Prado
    de Paula, Eneida
    Rosa, Andre Henrique
    Fraceto, Leonardo Fernandes
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 165 (03): : 243 - 246
  • [19] Porous poly (D,L-lactide-co-glycolide) acid/biosilicate® composite scaffolds for bone tissue engineering
    Kido, Hueliton W.
    Brassolatti, Patricia
    Tim, Carla R.
    Gabbai-Armelin, Paulo R.
    Magri, Angela M. P.
    Fernandes, Kelly R.
    Bossini, Paulo S.
    Parizotto, Nivaldo A.
    Crovace, Murilo C.
    Malavazi, Iran
    da Cunha, Anderson F.
    Plepis, Ana M. G.
    Anibal, Fernanda F.
    Renno, Ana C. M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2017, 105 (01) : 63 - 71
  • [20] Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres
    Liu, Xianqiao
    Kaminski, Michael D.
    Chen, Haitao
    Torno, Michael
    Taylor, LaToyia
    Rosengart, Axel J.
    JOURNAL OF CONTROLLED RELEASE, 2007, 119 (01) : 52 - 58