Calf Posture Recognition Using Convolutional Neural Network

被引:1
|
作者
Tan Chen Tung [1 ]
Khairuddin, Uswah [1 ]
Shapiai, Mohd Ibrahim [1 ]
Nor, Norhariani Md [2 ]
Hiew, Mark Wen Han [2 ]
Suhaimie, Nurul Aisyah Mohd [3 ]
机构
[1] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur 54100, Malaysia
[2] Univ Putra Malaysia, Fac Vet Med, Serdang 43400, Selangor, Malaysia
[3] Fac Bioresources & Food Ind, Besut 22200, Malaysia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 01期
关键词
Calf posture; machine vision; deep learning; transfer learning; IMAGE-ANALYSIS; COWS; BEHAVIOR; PREDICTION; WEIGHT;
D O I
10.32604/cmc.2023.029277
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dairy farm management is crucial to maintain the longevity of the farm, and poor dairy youngstock or calf management could lead to gradually deteriorating calf health, which often causes premature death. This was found to be the most neglected part among the management workflows in Malaysia and has caused continuous loss over the recent years. Calf posture recognition is one of the effective methods to monitor calf behaviour and health state, which can be achieved by monitoring the calf behaviours of standing and lying where the former depicts active calf, and the latter, passive calf. Calf posture recognition module is an important component of some automated calf monitoring systems, as the system requires the calf to be in a standing posture before proceeding to the next stage of monitoring, or at the very least, to monitor the activeness of the calves. Calf posture such as standing or resting can easily be distinguished by human eye, however, to be recognized by a machine, it will require more complicated frameworks, particularly one that involves a deep learning neural networks model. Large number of high -quality images are required to train a deep learning model for such tasks. In this paper, multiple Convolutional Neural Network (CNN) architectures were compared, and the residual network (ResNet) model (specifically, ResNet-50) was ultimately chosen due to its simplicity, great performance, and decent inference time. Two ResNet-50 models having the exact same architecture and configuration have been trained on two different image datasets respectively sourced by separate cameras placed at different angle. There were two camera placements to use for comparison because camera placements can signifi-cantly impact the quality of the images, which is highly correlated to the deep learning model performance. After model training, the performance for both CNN models were 99.7% and 99.99% accuracies, respectively, and is adequate for a real-time calf monitoring system.
引用
收藏
页码:1493 / 1508
页数:16
相关论文
共 50 条
  • [41] Using Convolutional Neural Network and a Single Heartbeat for ECG Biometric Recognition
    AlDuwaile, Dalal A.
    Islam, Md Saiful
    ENTROPY, 2021, 23 (06)
  • [42] ELECTROENCEPHALOGRAM-BASED EMOTION RECOGNITION USING A CONVOLUTIONAL NEURAL NETWORK
    Savinov, V. B.
    Botman, S. A.
    Sapunov, V. V.
    Petrov, V. A.
    Samusev, I. G.
    Shusharina, N. N.
    BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY, 2019, (03): : 34 - 38
  • [43] Food Recognition and Food Waste Estimation Using Convolutional Neural Network
    Lubura, Jelena
    Pezo, Lato
    Sandu, Mirela Alina
    Voronova, Viktoria
    Donsi, Francesco
    Zlabur, Jana Sic
    Ribic, Bojan
    Peter, Anamarija
    Suric, Jona
    Brandic, Ivan
    Kloga, Marija
    Ostojic, Sanja
    Pataro, Gianpiero
    Virsta, Ana
    Oros , Ana Elisabeta
    Micic, Darko
    Durovic, Sasa
    De Feo, Giovanni
    Procentese, Alessandra
    Voca, Neven
    ELECTRONICS, 2022, 11 (22)
  • [44] Worddeepnet: handwritten gurumukhi word recognition using convolutional neural network
    Kaur, Harmandeep
    Bansal, Shally
    Kumar, Munish
    Mittal, Ajay
    Kumar, Krishan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46763 - 46788
  • [45] Music genre recognition using convolutional recurrent neural network architecture
    Bisharad, Dipjyoti
    Laskar, Rabul Hussain
    EXPERT SYSTEMS, 2019, 36 (04)
  • [46] Bengali Sign Language Recognition Using Deep Convolutional Neural Network
    Hossen, M. A.
    Govindaiah, Arun
    Sultana, Sadia
    Bhuiyan, Alauddin
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 369 - 373
  • [47] Sign Language Recognition Using Modified Convolutional Neural Network Model
    Suharjito
    Gunawan, Herman
    Thiracitta, Narada
    Nugroho, Ariadi
    2018 INDONESIAN ASSOCIATION FOR PATTERN RECOGNITION INTERNATIONAL CONFERENCE (INAPR), 2018, : 1 - 5
  • [48] Music note position recognition in optical music recognition using convolutional neural network
    Andrea
    Paoline
    Zahra, Amalia
    INTERNATIONAL JOURNAL OF ARTS AND TECHNOLOGY, 2021, 13 (01) : 45 - 60
  • [49] Face Recognition Using Depth Images Base Convolutional Neural Network
    Chen, Juxiang
    Zhang, Zhihao
    Yao, Liansheng
    Li, Bo
    Chen, Tong
    PROCEEDING OF THE 2019 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (IEEE CITS 2019), 2019, : 187 - 190
  • [50] Gender Recognition from Facial Images using Convolutional Neural Network
    Mittal, Shubham
    Mittal, Shiva
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 347 - 352