Perfect subtree property for weakly compact cardinals

被引:1
|
作者
Hayut, Yair [1 ]
Mueller, Sandra [2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[2] TU Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1007/s11856-022-2385-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the consistency strength of the statement: kappa is weakly compact and there is no tree on kappa with exactly kappa(+) many branches. We show that this statement fails strongly (in the sense that there is a sealed tree with exactly kappa(+) many branches) if there is no inner model with a Woodin cardinal. Moreover, we show that for a weakly compact cardinal kappa the nonexistence of a tree on kappa with exactly kappa(+) many branches and, in particular, the Perfect Subtree Property for kappa, implies the consistency of AD(Double-struck capital R) + DC.
引用
收藏
页码:865 / 886
页数:22
相关论文
共 50 条