Injectivity of Gabor phase retrieval from lattice measurements

被引:14
作者
Grohs, Philipp [1 ,2 ,3 ]
Liehr, Lukas [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Johann Radon Inst Appl & Computat Math, Altenbergstr 69, A-4040 Linz, Austria
[3] Univ Vienna, Res Network DataSci UniVie, Kolingasse 14-16, A-1090 Vienna, Austria
关键词
Phase retrieval; Spectrogram sampling; Gabor transform; Shift -invariant spaces; Lattice measurements; UNIQUENESS; RECONSTRUCTION; TRANSFORM;
D O I
10.1016/j.acha.2022.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish novel uniqueness results for the Gabor phase retrieval problem: if c : L2 (R) -+ L2(R2) denotes the Gabor transform then every f E L4[- 2c, c2 ] is determined up to a global phase by the values |c f (x, omega)| where (x, omega) are points on the lattice b-1Z x (2c)-1Z and b > 0 is an arbitrary positive constant. This for the first time shows that compactly-supported, complex-valued functions can be uniquely reconstructed from lattice samples of their spectrogram. Moreover, by making use of recent developments related to sampling in shift-invariant spaces by Grochenig, Romero and Stockler, we prove analogous uniqueness results for functions in shift-invariant spaces with Gaussian generator. Generalizations to nonuniform sampling are also presented. Finally, we compare our results to the situation where the considered signals are assumed to be real-valued. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:173 / 193
页数:21
相关论文
共 33 条
  • [1] Phase Retrieval from Sampled Gabor Transform Magnitudes: Counterexamples
    Alaifari, Rima
    Wellershoff, Matthias
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
  • [2] Uniqueness of STFT phase retrieval for bandlimited functions
    Alaifari, Rima
    Wellershoff, Matthias
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 50 : 34 - 48
  • [3] Nonuniform sampling and reconstruction in shift-invariant spaces
    Aldroubi, A
    Gröchenig, K
    [J]. SIAM REVIEW, 2001, 43 (04) : 585 - 620
  • [4] ON CLOSURE OF CHARACTERS AND ZEROS OF ENTIRE FUNCTIONS
    BEURLING, A
    MALLIAVIN, P
    [J]. ACTA MATHEMATICA UPPSALA, 1967, 118 (1-2): : 79 - +
  • [5] ON FOURIER TRANSFORMS OF MEASURES WITH COMPACT SUPPORT
    BEURLING, A
    MALLIAVIN, P
    [J]. ACTA MATHEMATICA, 1962, 107 (3-4) : 291 - 309
  • [6] Elementary signals in ptychography
    da Silva, Julio Cesar
    Menzel, Andreas
    [J]. OPTICS EXPRESS, 2015, 23 (26): : 33812 - 33821
  • [7] The numerics of phase retrieval
    Fannjiang, Albert
    Strohmer, Thomas
    [J]. ACTA NUMERICA, 2020, 29 : 125 - 228
  • [8] Gr├a┬Achenig K., 2001, FDN TIME FREQUENCY A
  • [9] Phase-Retrieval in Shift-Invariant Spaces with Gaussian Generator
    Groechenig, Karlheinz
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (03)
  • [10] Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions
    Groechenig, Karlheinz
    Romero, Jose Luis
    Stoeckler, Joachim
    [J]. INVENTIONES MATHEMATICAE, 2018, 211 (03) : 1119 - 1148