A Machine learning-based approach to determining stress in rails

被引:11
|
作者
Belding, Matthew [1 ]
Enshaeian, Alireza [1 ]
Rizzo, Piervincenzo [1 ]
机构
[1] Univ Pittsburgh, Dept Civil & Environm Engn, Lab Nondestruct Evaluat & Struct Hlth Monitoring, 718 Benedum Hall, Pittsburgh, PA 15261 USA
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2023年 / 22卷 / 01期
关键词
Continuous welded rails; finite element model; machine learning; structural health monitoring; MULTIRESOLUTION CLASSIFICATION; DEFECT CLASSIFICATION; NEUTRAL TEMPERATURE; AXIAL STRESS; ALGORITHM;
D O I
10.1177/14759217221085658
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent advancements in both software and hardware have sparked the use of machine learning (ML) in structural health monitoring (SHM) applications. This paper delves into the use of ML to determine axial stress in continuous welded rails (CWR). The overall proposed SHM strategy consists of monitoring the vibration of CWR and associating their modal characteristics to the rail longitudinal stress using a ML algorithm trained with data generated with a finite element model. In the present study, the feasibility of the proposed strategy was tested on a simple rail segment subjected to mechanical compression. Two algorithms were developed using hyperparameter search optimization techniques to infer the stress from the frequencies of vibration of a few modes of the rail. The training data were generated with a finite element model of a rail segment under varying axial stresses, rail lengths, and boundary conditions at the two ends of the segment. The algorithms were then tested with a second set of data generated numerically and the results of an experiment in which a 2.4-m-long rail was subjected to compressive load and excited with an instrumented hammer. Both tests demonstrated that ML is a viable tool to estimate axial stress in the rail segment provided a sufficient number of modes of vibrations are presented to the learning algorithm. For the future, more experiments are warranted to test the ML against data from real CWR.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [31] Lightweight Machine Learning-Based Approach for Supervision of Fitness Workout
    Depari, A.
    Ferrari, P.
    Flammini, A.
    Rinaldi, S.
    Sisinni, E.
    2019 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2019,
  • [32] Machine Learning-Based Approach to Liner Shipping Schedule Design
    Du J.
    Zhao X.
    Guo L.
    Wang J.
    Journal of Shanghai Jiaotong University (Science), 2022, 27 (03): : 411 - 423
  • [33] Detecting Refactoring Commits in Machine Learning Python']Python Projects: A Machine Learning-Based Approach
    Noei, Shayan
    Li, Heng
    Zou, Ying
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2025, 34 (03)
  • [34] A machine learning-based approach to prognostic analysis of thoracic transplantations
    Delen, Dursun
    Oztekin, Asil
    Kong, Zhenyu
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 49 (01) : 33 - 42
  • [35] Machine learning-based approach for zircon classification and genesis determination
    Zhu Z.
    Zhou F.
    Wang Y.
    Zhou T.
    Hou Z.
    Qiu K.
    Earth Science Frontiers, 2022, 29 (05) : 464 - 475
  • [36] Machine Learning-Based Approach for Automatic Ion Implanter Monitoring
    Lin, Yu-Ling
    Zhao, Qiangfu
    Horng, Shih-Cheng
    2022 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2022,
  • [37] A machine learning-based approach for mercury detection in marine waters
    Piccialli, Francesco
    Giampaolo, Fabio
    Di Cola, Vincenzo Schiano
    Gatta, Federico
    Chiaro, Diletta
    Prezioso, Edoardo
    Izzo, Stefano
    Cuomo, Salvatore
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 527 - 536
  • [38] A machine learning-based classification approach for phase diagram prediction
    Deffrennes, Guillaume
    Terayama, Kei
    Abe, Taichi
    Tamura, Ryo
    MATERIALS & DESIGN, 2022, 215
  • [39] A machine learning-based Biding price optimization algorithm approach
    Ahmad, Saleem
    Salem, Sultan
    Khan, Yousaf Ali
    Ashraf, I. M.
    HELIYON, 2023, 9 (10)
  • [40] A machine learning-based mobile robot visual homing approach
    Zhu, Q.
    Ji, X.
    Wang, J.
    Cai, C.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2018, 66 (05) : 621 - 634