A Machine learning-based approach to determining stress in rails

被引:11
|
作者
Belding, Matthew [1 ]
Enshaeian, Alireza [1 ]
Rizzo, Piervincenzo [1 ]
机构
[1] Univ Pittsburgh, Dept Civil & Environm Engn, Lab Nondestruct Evaluat & Struct Hlth Monitoring, 718 Benedum Hall, Pittsburgh, PA 15261 USA
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2023年 / 22卷 / 01期
关键词
Continuous welded rails; finite element model; machine learning; structural health monitoring; MULTIRESOLUTION CLASSIFICATION; DEFECT CLASSIFICATION; NEUTRAL TEMPERATURE; AXIAL STRESS; ALGORITHM;
D O I
10.1177/14759217221085658
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent advancements in both software and hardware have sparked the use of machine learning (ML) in structural health monitoring (SHM) applications. This paper delves into the use of ML to determine axial stress in continuous welded rails (CWR). The overall proposed SHM strategy consists of monitoring the vibration of CWR and associating their modal characteristics to the rail longitudinal stress using a ML algorithm trained with data generated with a finite element model. In the present study, the feasibility of the proposed strategy was tested on a simple rail segment subjected to mechanical compression. Two algorithms were developed using hyperparameter search optimization techniques to infer the stress from the frequencies of vibration of a few modes of the rail. The training data were generated with a finite element model of a rail segment under varying axial stresses, rail lengths, and boundary conditions at the two ends of the segment. The algorithms were then tested with a second set of data generated numerically and the results of an experiment in which a 2.4-m-long rail was subjected to compressive load and excited with an instrumented hammer. Both tests demonstrated that ML is a viable tool to estimate axial stress in the rail segment provided a sufficient number of modes of vibrations are presented to the learning algorithm. For the future, more experiments are warranted to test the ML against data from real CWR.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [21] Machine learning-based approach for predicting low birth weight
    Ranjbar, Amene
    Montazeri, Farideh
    Farashah, Mohammadsadegh Vahidi
    Mehrnoush, Vahid
    Darsareh, Fatemeh
    Roozbeh, Nasibeh
    BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
  • [22] A Machine Learning-Based Approach to Quantify ENSO Sources of Predictability
    Colfescu, Ioana
    Christensen, Hannah
    Gagne, David John
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (13)
  • [23] Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
    Taeidi, Elham
    Ranjbar, Amene
    Montazeri, Farideh
    Mehrnoush, Vahid
    Darsareh, Fatemeh
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [24] Auto Machine Learning-Based Approach for Source Printer Identification
    Phu-Qui Vo
    Nhan Tam Dang
    Phu Nguyen, Q.
    An Mai
    Nguyen, Loan T. T.
    Quoc-Thong Nguyen
    Ngoc-Thanh Nguyen
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 668 - 680
  • [25] Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach
    Bouabdallaoui, Yassine
    Lafhaj, Zoubeir
    Yim, Pascal
    Ducoulombier, Laure
    Bennadji, Belkacem
    SENSORS, 2021, 21 (04) : 1 - 15
  • [26] A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton
    Varma, V. S.
    Yogeshwar Rao, R.
    Vundavilli, P. R.
    Pandit, M. K.
    Budarapu, P. R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (08)
  • [27] Retail store location screening: A machine learning-based approach
    Lu, Jialiang
    Zheng, Xu
    Nervino, Esterina
    Li, Yanzhi
    Xu, Zhihua
    Xu, Yabo
    JOURNAL OF RETAILING AND CONSUMER SERVICES, 2024, 77
  • [28] Machine Learning-Based Enterprise Modeling Assistance: Approach and Potentials
    Shilov, Nikolay
    Othman, Walaa
    Fellmann, Michael
    Sandkuhl, Kurt
    PRACTICE OF ENTERPRISE MODELING, POEM 2021, 2021, 432 : 19 - 33
  • [29] A Holistic Machine Learning-based Autoscaling Approach for Microservice Applications
    Goli, Alireza
    Mahmoudi, Nima
    Khazaei, Hamzeh
    Ardakanian, Omid
    CLOSER: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, 2021, : 190 - 198
  • [30] A Machine Learning-based Approach for Automated Vulnerability Remediation Analysis
    Zhang, Fengli
    Huff, Philip
    McClanahan, Kylie
    Li, Qinghua
    2020 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2020,