Non-autonomous fractional Cauchy problems with almost sectorial operators

被引:0
|
作者
He, Jia Wei [1 ]
Zhou, Yong [2 ,3 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
[2] Macau Univ Sci & Technol, Macao Ctr Math Sci, Taipa 999078, Macau, Peoples R China
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2024年 / 191卷
基金
中国国家自然科学基金;
关键词
Fractional Cauchy problems; Non-autonomous evolution equations; Existence; EVOLUTION-EQUATIONS; TIME; REGULARITY; DIFFUSION; EXISTENCE; DYNAMICS;
D O I
10.1016/j.bulsci.2024.103395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of non -autonomous fractional Cauchy problems with the almost sectorial operators. We consider the time fractional derivative in the sense of Caputo type. First, we construct two operator families by means of Mittag-Leffler functions, which will be useful to both determine the structure of solution operator families and prove existence results. Moreover, we establish the existence and uniqueness for classical solutions of linear problem, and the existence of mild solutions for nonlinear problem by proving the compactness of solution operator families. Finally, we provide several examples to illustrate the efficiency of our results. (c) 2024 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:45
相关论文
共 50 条
  • [11] LINEAR NON-AUTONOMOUS CAUCHY PROBLEMS AND EVOLUTION SEMIGROUPS
    Neidhardt, Hagen
    Zagrebnov, Valentin A.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2009, 14 (3-4) : 289 - 340
  • [12] Non-autonomous stochastic Cauchy problems in Banach spaces
    Veraar, Mark
    Zimmerschied, Jan
    STUDIA MATHEMATICA, 2008, 185 (01) : 1 - 34
  • [13] Almost Sectorial Operators in Fractional Superdiffusion Equations
    Cuesta, Eduardo
    Ponce, Rodrigo
    APPLIED MATHEMATICS AND OPTIMIZATION, 2025, 91 (01):
  • [14] Convergence Rate Estimates for Trotter Product Approximations of Solution Operators for Non-autonomous Cauchy Problems
    Neidhardt, Hagen
    Stephan, Artur
    Zagrebnov, Valentin A.
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2020, 56 (01) : 83 - 135
  • [15] STUDY OF FRACTIONAL ORDER DELAY CAUCHY NON-AUTONOMOUS EVOLUTION PROBLEMS VIA DEGREE THEORY
    Khan, Zareen A.
    Shah, Kamal
    Mahariq, Ibrahim
    Alrabaiah, Hussam
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [16] INFINITE INTERVAL PROBLEMS FOR HILFER FRACTIONAL EVOLUTION EQUATIONS WITH ALMOST SECTORIAL OPERATORS
    Zhou, Mian
    Liang, Yong
    Zhou, Yong
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (06) : 2257 - 2272
  • [17] Maximal regularity for second order non-autonomous Cauchy problems
    Batty, Charles J. K.
    Chill, Ralph
    Srivastava, Sachi
    STUDIA MATHEMATICA, 2008, 189 (03) : 205 - 223
  • [18] Stability and Local Attractivity for Non-autonomous Boundary Cauchy Problems
    Jerroudi, Amine
    Moussi, Mohammed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [19] Wellposedness and asymptotic behaviour of non-autonomous boundary Cauchy problems
    Boulite, S.
    Maniar, L.
    Moussi, M.
    FORUM MATHEMATICUM, 2006, 18 (04) : 611 - 638
  • [20] Maximal Regularity for Non-Autonomous Second Order Cauchy Problems
    Dominik Dier
    El Maati Ouhabaz
    Integral Equations and Operator Theory, 2014, 78 : 427 - 450