Prediction of certainty in artificial intelligence-enabled electrocardiography

被引:0
作者
Demolder, Anthony [1 ,2 ]
Nauwynck, Maxime [1 ]
De Pauw, Michel [1 ]
De Buyzere, Marc [1 ]
Duytschaever, Mattias [1 ]
Timmermans, Frank [1 ]
De Pooter, Jan [1 ]
机构
[1] Ghent Univ Hosp, Dept Cardiol, Ghent, Belgium
[2] Ghent Univ Hosp, Dept Cardiol, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
关键词
Artificial intelligence; Deep learning; ECG; Prediction; Certainty;
D O I
10.1016/j.jelectrocard.2024.01.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The 12-lead ECG provides an excellent substrate for artificial intelligence (AI) enabled prediction of various cardiovascular diseases. However, a measure of prediction certainty is lacking. Objectives: To assess a novel approach for estimating certainty of AI-ECG predictions. Methods: Two convolutional neural networks (CNN) were developed to predict patient age and sex. Model 1 applied a 5 s sliding time-window, allowing multiple CNN predictions. The consistency of the output values, expressed as interquartile range (IQR), was used to estimate prediction certainty. Model 2 was trained on the full 10s ECG signal, resulting in a single CNN point prediction value. Performance was evaluated on an internal test set and externally validated on the PTB-XL dataset. Results: Both CNNs were trained on 269,979 standard 12-lead ECGs (82,477 patients). Model 1 showed higher accuracy for both age and sex prediction (mean absolute error, MAE 6.9 +/- 6.3 years vs. 7.7 +/- 6.3 years and AUC 0.946 vs. 0.916, respectively, P < 0.001 for both). The IQR of multiple CNN output values allowed to differentiate between high and low accuracy of ECG based predictions (P < 0.001 for both). Among 10% of patients with narrowest IQR, sex prediction accuracy increased from 65.4% to 99.2%, and MAE of age prediction decreased from 9.7 to 4.1 years compared to the 10% with widest IQR. Accuracy and estimation of prediction certainty of model 1 remained true in the external validation dataset. Conclusions: Sliding window-based approach improves ECG based prediction of age and sex and may aid in addressing the challenge of prediction certainty estimation.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 25 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[3]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[4]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[5]   Machine learning for brain age prediction: Introduction to methods and clinical applications [J].
Baecker, Lea ;
Garcia-Dias, Rafael ;
Vieira, Sandra ;
Scarpazza, Cristina ;
Mechelli, Andrea .
EBIOMEDICINE, 2021, 72
[6]   Evaluation of uncertainty quantification methods in multi-label classification: A case study with automatic diagnosis of electrocardiogram [J].
Barandas, Marilia ;
Famiglini, Lorenzo ;
Campagner, Andrea ;
Folgado, Duarte ;
Simao, Raquel ;
Cabitza, Federico ;
Gamboa, Hugo .
INFORMATION FUSION, 2024, 101
[7]   Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram [J].
Bos, J. Martijn ;
Attia, Zachi I. ;
Albert, David E. ;
Noseworthy, Peter A. ;
Friedman, Paul A. ;
Ackerman, Michael J. .
JAMA CARDIOLOGY, 2021, 6 (05) :532-538
[8]   Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information on the Incidence of Cardiovascular Disorders [J].
Chang, Chiao-Hsiang ;
Lin, Chin-Sheng ;
Luo, Yu-Sheng ;
Lee, Yung-Tsai ;
Lin, Chin .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[9]   Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency [J].
Cutillo, Christine M. ;
Sharma, Karlie R. ;
Foschini, Luca ;
Kundu, Shinjini ;
Mackintosh, Maxine ;
Mandl, Kenneth D. ;
Beck, Tyler ;
Collier, Elaine ;
Colvis, Christine ;
Gersing, Kenneth ;
Gordon, Valery ;
Jensen, Roxanne ;
Shabestari, Behrouz ;
Southall, Noel .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]  
Gal Y, 2016, PR MACH LEARN RES, V48