GLOBAL EXISTENCE FOR THE STOCHASTIC BOUSSINESQ EQUATIONS WITH TRANSPORT NOISE AND SMALL ROUGH DATA

被引:0
作者
Lin, Quyuan [1 ]
Liu, Rongchang [2 ]
Wang, Weinan [3 ]
机构
[1] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Key words. stochastic Boussinesq equations; transport noise; rough initial data; well-posedness; pathwise solution; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; PRIMITIVE EQUATIONS; EULER EQUATIONS; LOCAL EXISTENCE; REGULARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the stochastic Boussinesq equations on T-3 with transport noise and rough initial data. We prove the existence and uniqueness of the local pathwise solution with initial data in L-p(Omega ; L-p) for p > 5. By assuming additional smallness on the initial data and the noise, we establish the global existence of the pathwise solution.
引用
收藏
页码:501 / 528
页数:28
相关论文
共 50 条
  • [21] Existence and Non-uniqueness of Global Weak Solutions to Inviscid Primitive and Boussinesq Equations
    Chiodaroli, Elisabetta
    Michalek, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1201 - 1216
  • [22] Global existence of dissipative solutions to the Camassa-Holm equation with transport noise
    Galimberti, L.
    Holden, H.
    Karlsen, K. H.
    Pang, P. H. C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 387 : 1 - 103
  • [23] Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise
    Debussche, A.
    Glatt-Holtz, N.
    Temam, R.
    Ziane, M.
    NONLINEARITY, 2012, 25 (07) : 2093 - 2118
  • [24] Global existence for the primitive equations with small anisotropic viscosity
    Charve, Frederic
    Ngo, Van-Sang
    REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) : 1 - 38
  • [25] Global existence and blowup of stochastic parabolic equations
    Li, Wei
    Lv, Guangying
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [26] Small data global existence for a fluid-structure model
    Ignatova, Mihaela
    Kukavica, Igor
    Lasiecka, Irena
    Tuffaha, Amjad
    NONLINEARITY, 2017, 30 (02) : 848 - 898
  • [27] REMARKS ON THE GLOBAL WELL-POSEDNESS OF THE AXISYMMETRIC BOUSSINESQ SYSTEM WITH ROUGH INITIAL DATA
    Hanachi, A.
    Houamed, H.
    Zerguine, M.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (06) : 1918 - 1949
  • [28] Global Existence for the Semi-Dissipative 2D Boussinesq Equations on Exterior Domains
    Wu, Ruili
    Guo, Lunzhong
    Li, Junyan
    MATHEMATICS, 2025, 13 (03)
  • [29] Global Existence for Stochastic Strongly Dissipative Zakharov Equations
    Wang, Xueqin
    Shang, Yadong
    Lei, Chunlin
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [30] Small Data Global Existence and Decay for Relativistic Chern-Simons Equations
    Chae, Myeongju
    Oh, Sung-Jin
    ANNALES HENRI POINCARE, 2017, 18 (06): : 2123 - 2198