GLOBAL EXISTENCE FOR THE STOCHASTIC BOUSSINESQ EQUATIONS WITH TRANSPORT NOISE AND SMALL ROUGH DATA

被引:0
作者
Lin, Quyuan [1 ]
Liu, Rongchang [2 ]
Wang, Weinan [3 ]
机构
[1] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Key words. stochastic Boussinesq equations; transport noise; rough initial data; well-posedness; pathwise solution; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; PRIMITIVE EQUATIONS; EULER EQUATIONS; LOCAL EXISTENCE; REGULARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the stochastic Boussinesq equations on T-3 with transport noise and rough initial data. We prove the existence and uniqueness of the local pathwise solution with initial data in L-p(Omega ; L-p) for p > 5. By assuming additional smallness on the initial data and the noise, we establish the global existence of the pathwise solution.
引用
收藏
页码:501 / 528
页数:28
相关论文
共 50 条
  • [1] GLOBAL EXISTENCE FOR THE STOCHASTIC BOUSSINESQ EQUATIONS WITH TRANSPORT NOISE AND SMALL ROUGH DATA
    Lin Q.
    Liu R.
    Wang W.
    SIAM J. Math. Anal., 2024, 1 (501-528): : 501 - 528
  • [2] On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise
    Alonso-Oran, Diego
    Bethencourt de Leon, Aythami
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (01) : 175 - 224
  • [3] Local and global existence of pathwise solution for the stochastic Boussinesq equations with multiplicative noises
    Du, Lihuai
    Zhang, Ting
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1545 - 1567
  • [4] On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise
    Diego Alonso-Orán
    Aythami Bethencourt de León
    Journal of Nonlinear Science, 2020, 30 : 175 - 224
  • [5] Noise effects in some stochastic evolution equations: Global existence and dependence on initial data
    Tang, Hao
    Yang, Anita
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 378 - 410
  • [6] The stochastic primitive equations with transport noise and turbulent pressure
    Agresti, Antonio
    Hieber, Matthias
    Hussein, Amru
    Saal, Martin
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (01): : 53 - 133
  • [7] Global existence for the stochastic Navier-Stokes equations with small Lp data
    Kukavica, Igor
    Xu, Fanhui
    Ziane, Mohammed
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (01): : 160 - 189
  • [8] The Global Existence and Averaging Theorem for the Strong Solution of the Stochastic Boussinesq Equations with the Low Froude Number
    Du, Lihuai
    Zhang, Ting
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [9] GLOBAL EXISTENCE OF SOLUTIONS FOR THE THREE-DIMENSIONAL BOUSSINESQ SYSTEM WITH ANISOTROPIC DATA
    Qin, Yuming
    Wang, Yang
    Su, Xing
    Zhang, Jianlin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (03) : 1563 - 1581
  • [10] Global existence of mild solutions for 3D stochastic Boussinesq system in Besov spaces
    Sun, Jinyi
    Li, Ning
    Yang, Minghua
    MATHEMATISCHE NACHRICHTEN, 2025, : 1105 - 1126