Fundamental properties of Cauchy-Szego projection on quaternionic Siegel upper half space and applications

被引:1
作者
Chang, Der-Chen [1 ,2 ,3 ]
Duong, Xuan Thinh [4 ]
Li, Ji [4 ]
Wang, Wei [5 ]
Wu, Qingyan [6 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Georgetown Univ, Dept Comp Sci, Washington, DC 20057 USA
[3] Fu Jen Catholic Univ, Grad Inst Business Adm, Coll Management, New Taipei City 242, Taiwan
[4] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
[5] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[6] Linyi Univ, Dept Math, Linyi 276005, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
Cauchy-Szego projection; quaternionic Siegel upper half space; regularity; pointwise lower bound; Schatten class; PLURISUBHARMONIC-FUNCTIONS; LINEAR ALGEBRA; FUETER COMPLEX; HARDY-SPACES; BERGMAN; DECOMPOSITION; RESOLUTIONS; FORMULA; KERNEL;
D O I
10.1515/forum-2024-0049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Cauchy-Szego projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy-Szego kernel and prove that the Cauchy-Szego kernel is nonzero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy-Szego projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space ( )H(p )on quaternionic Siegel upper half space for 2/3 < p <= 1. Moreover, we establish the characterisation of singular values of the commutator of Cauchy-Szego projection based on the kernel estimates. The quaternionic structure (lack of commutativity) is encoded in the symmetry groups of regular functions and the associated partial differential equations.
引用
收藏
页码:43 / 74
页数:32
相关论文
共 59 条