The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter

被引:32
作者
Delmer, Deborah [1 ]
Dixon, Richard A. [2 ,3 ]
Keegstra, Kenneth [4 ]
Mohnen, Debra [5 ,6 ]
机构
[1] Univ Calif Davis, Sect Plant Biol, Davis, CA 95616 USA
[2] Univ North Texas, BioDiscovery Inst, Denton, TX 76203 USA
[3] Univ North Texas, Dept Biol Sci, Denton, TX 76203 USA
[4] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48823 USA
[5] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
[6] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
关键词
CELLULOSE-SYNTHASE-LIKE; POLYSACCHARIDE RHAMNOGALACTURONAN-II; TRACHEARY ELEMENT DIFFERENTIATION; HOST-PATHOGEN INTERACTIONS; BETA-GLUCAN SYNTHESIS; RECEPTOR-LIKE KINASES; GLYCINE-RICH PROTEIN; X-RAY-SCATTERING; ARABIDOPSIS-THALIANA; PLASMA-MEMBRANE;
D O I
10.1093/plcell/koad325
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments. This review provides a historical context for the processes by which plant cell wall structures are created, assemble, sense, and respond to signals and change during progression from birth to death.
引用
收藏
页码:1257 / 1311
页数:55
相关论文
共 598 条
  • [51] Functional Analysis of the Cellulose Synthase-Like Genes CSLD1, CSLD2, and CSLD4 in Tip-Growing Arabidopsis Cells
    Bernal, Adriana J.
    Yoo, Cheol-Min
    Mutwil, Marek
    Jensen, Jakob Kruger
    Hou, Guichuan
    Blaukopf, Claudia
    Sorensen, Iben
    Blancaflor, Elison B.
    Scheller, Henrik Vibe
    Willats, William G. T.
    [J]. PLANT PHYSIOLOGY, 2008, 148 (03) : 1238 - 1253
  • [52] Expression of AtPRP3, a proline-rich structural cell wall protein from arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation
    Bernhardt, C
    Tierney, ML
    [J]. PLANT PHYSIOLOGY, 2000, 122 (03) : 705 - 714
  • [53] Insights into the structure and function of membrane-integrated processive glycosyltransferases
    Bi, Yunchen
    Hubbard, Caitlin
    Purushotham, Pallinti
    Zimmer, Jochen
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2015, 34 : 78 - 86
  • [54] Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis
    Biswal, Ajaya K.
    Atmodjo, Melani A.
    Li, Mi
    Baxter, Holly L.
    Yoo, Chang Geun
    Pu, Yunqiao
    Lee, Yi-Ching
    Mazarei, Mitra
    Black, Ian M.
    Zhang, Ji-Yi
    Ramanna, Hema
    Bray, Adam L.
    King, Zachary R.
    LaFayette, Peter R.
    Pattathil, Sivakumar
    Donohoe, Bryon S.
    Mohanty, Sushree S.
    Ryno, David
    Yee, Kelsey
    Thompson, Olivia A.
    Rodriguez, Miguel, Jr.
    Dumitrache, Alexandru
    Natzke, Jace
    Winkeler, Kim
    Collins, Cassandra
    Yang, Xiaohan
    Tan, Li
    Sykes, Robert W.
    Gjersing, Erica L.
    Ziebell, Angela
    Turner, Geoffrey B.
    Decker, Stephen R.
    Hahn, Michael G.
    Davison, Brian H.
    Udvardi, Michael K.
    Mielenz, Jonathan R.
    Davis, Mark F.
    Nelson, Richard S.
    Parrott, Wayne A.
    Ragauskas, Arthur J.
    Stewart, C. Neal, Jr.
    Mohnen, Debra
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (03) : 249 - +
  • [55] Twenty Years of Progress in Physiological and Biochemical Investigation of RALF Peptides1[OPEN]
    Blackburn, Matthew R.
    Haruta, Miyoshi
    Moura, Daniel S.
    [J]. PLANT PHYSIOLOGY, 2020, 182 (04) : 1657 - 1666
  • [56] Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge
    Boisson-Dernier, Aurelien
    Roy, Sucharita
    Kritsas, Konstantinos
    Grobei, Monica A.
    Jaciubek, Miloslawa
    Schroeder, Julian I.
    Grossniklaus, Ueli
    [J]. DEVELOPMENT, 2009, 136 (19): : 3279 - 3288
  • [57] Bonner J., 1936, Botanical Review, V2, P475
  • [58] An update on cell surface proteins containing extensin-motifs
    Borassi, Cecilia
    Sede, Ana R.
    Mecchia, Martin A.
    Salter, Juan D. Salgado
    Marzol, Eliana
    Muschietti, Jorge P.
    Estevez, Jose M.
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (02) : 477 - 487
  • [59] Pectin methylesterases and pectin dynamics in pollen tubes
    Bosch, M
    Hepler, PK
    [J]. PLANT CELL, 2005, 17 (12) : 3219 - 3226
  • [60] Quasimodo1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis
    Bouton, S
    Leboeuf, E
    Mouille, G
    Leydecker, MT
    Talbotec, J
    Granier, F
    Lahaye, M
    Höfte, H
    Truong, HN
    [J]. PLANT CELL, 2002, 14 (10) : 2577 - 2590