First-principles investigation of Boron-doped graphene/MoS2 heterostructure as a potential anode material for Mg-ion battery

被引:12
作者
Qi, Jiqiu [1 ]
Li, Qian [1 ]
Huang, Mengyuan [1 ]
Ni, Jianjun [1 ]
Sui, Yanwei [1 ]
Meng, Qingkun [1 ]
Wei, Fuxiang [1 ]
Zhu, Lei [1 ]
Wei, Wenqing [2 ]
机构
[1] China Univ Min & Technol, Sch Mat Sci & Phys, Jiangsu Prov Engn Lab High Efficient Energy Storag, Xuzhou 221116, Peoples R China
[2] Weifang Univ, Sch Mech Elect & Vehicle Engn, Weifang 261061, Peoples R China
基金
中国国家自然科学基金;
关键词
Boron-dopedgraphene/MoS2; composite; Magnesium ion batteries; First-principles calculations; Storage performance; LITHIUM; ADSORPTION; MONOLAYER; STATE; BAND; NA;
D O I
10.1016/j.colsurfa.2023.132998
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the potential of boron -doped graphene/MoS2 (Gr/MoS2) as an anode material for magnesium ion batteries was investigated using density functional theory (DFT) based on first -principles calculations. It's found that the adsorption capacity gradually increases (-3.078 eV) with the increase in the number of doped -boron atom. Due to the lower electronegativity of boron atom (2.04) compared to carbon atom (2.55), electrons can be transferred from boron atom to neighboring carbon atoms, resulting in positively charged boron atom. Boron doping introduces p -type doping, which increases the number of holes in the substrate and raises the carrier concentration. The energy of the density of states near the Fermi level also increases with the increase of borondoping concentration, indicating its excellent electronic conductivity. When the number of boron atoms reaches four, the barriers of the two diffusion paths reduce to 0.49 eV and 1.025 eV, respectively. Simultaneously, the theoretical magnesium storage capacity increases to 147.26 mAh g-1. Our research results demonstrate that boron -doping significantly enhances the adsorption and storage performance of Mg, providing a theoretical basis for the investigation of anode materials for magnesium ion batteries.
引用
收藏
页数:11
相关论文
共 42 条
  • [11] A fast and robust algorithm for Bader decomposition of charge density
    Henkelman, Graeme
    Arnaldsson, Andri
    Jonsson, Hannes
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2006, 36 (03) : 354 - 360
  • [12] Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries
    Jing, Yu
    Zhou, Zhen
    Cabrera, Carlos R.
    Chen, Zhongfang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (48) : 25409 - 25413
  • [13] Structures and Phase Transition of a MoS2 Monolayer
    Kan, M.
    Wang, J. Y.
    Li, X. W.
    Zhang, S. H.
    Li, Y. W.
    Kawazoe, Y.
    Sun, Q.
    Jena, P.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (03) : 1515 - 1522
  • [14] Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes
    Khan, Karim
    Tareen, Ayesha Khan
    Aslam, Muhammad
    Khan, Muhammad Farooq
    Shi, Zhe
    Ma, Chunyang
    Shams, S. Saqib
    Khatoon, Rabia
    Mahmood, Nasir
    Zhang, Han
    Guo, Zhongyi
    [J]. PROGRESS IN SOLID STATE CHEMISTRY, 2020, 59
  • [15] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [16] Elastomeric electrolytes for high-energy solid-state lithium batteries
    Lee, Michael J.
    Han, Junghun
    Lee, Kyungbin
    Lee, Young Jun
    Kim, Byoung Gak
    Jung, Kyu-Nam
    Kim, Bumjoon J.
    Lee, Seung Woo
    [J]. NATURE, 2022, 601 (7892) : 217 - +
  • [17] General synthesis of two-dimensional van der Waals heterostructure arrays
    Li, Jia
    Yang, Xiangdong
    Liu, Yang
    Huang, Bolong
    Wu, Ruixia
    Zhang, Zhengwei
    Zhao, Bei
    Ma, Huifang
    Dang, Weiqi
    Wei, Zheng
    Wang, Kai
    Lin, Zhaoyang
    Yan, Xingxu
    Sun, Mingzi
    Li, Bo
    Pan, Xiaoqing
    Luo, Jun
    Zhang, Guangyu
    Liu, Yuan
    Huang, Yu
    Duan, Xidong
    Duan, Xiangfeng
    [J]. NATURE, 2020, 579 (7799) : 368 - +
  • [18] Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities
    Liang, Shi-Jun
    Cheng, Bin
    Cui, Xinyi
    Miao, Feng
    [J]. ADVANCED MATERIALS, 2020, 32 (27)
  • [19] Lin DC, 2017, NAT NANOTECHNOL, V12, P194, DOI [10.1038/nnano.2017.16, 10.1038/NNANO.2017.16]
  • [20] A facile preparation route for boron-doped graphene, and its CdTe solar cell application
    Lin, Tianquan
    Huang, Fuqiang
    Liang, Jun
    Wang, Yingxia
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) : 862 - 865